The Rise of Armed Unmanned Aircraft – Part One

The Rise of Armed Unmanned Aircraft – Part One

By Dr Peter Layton

Editorial Note: In the first of a two-part article, Dr Peter Layton explores the evolution of the armed unmanned aircraft from its first use in the Second World War through to the First Gulf War.

In the Solomon Islands off Australia’s northern shores, on the 19 October 1944, a US Navy flown, Interstate Aircraft-built TDR-1 dropped a mix of ten 100lb and 500lb bombs against Japanese gun emplacements on Ballale Island.  This was the first operational armed unmanned aircraft attack in history.

The twin-engined unmanned aircraft involved was just one of some fifty sent into combat in late 1944 with Special Task Air Group One. The armed unmanned aircraft took off under radio control that was then transferred to accompanying manned TBM-1C Avenger control aircraft for the long transit to the target area. The control aircraft remained some 8-12 kilometres outside of the ground defences while using a data linked real-time video picture displayed on a cockpit mounted television screen for close-in guidance. Few of the Air Group personnel involved had even seen a television set before they joined the unit. Their feats would not be replicated until early in the 21st century.

In truth, while after 1944-armed unmanned aircraft continued to attract considerable interest and at times funding, the technology available was too immature. The crucial issue was to find technological solutions that could overcome the many problems arising from not having a person in the aircraft. Finding the right blend of complex technological solutions took several decades, but this was not enough to see armed unmanned aircraft fly again in combat. There had to be a compelling operational need only they could best meet.

Curiously enough, the next armed unmanned aircraft was again operated by the US Navy. In the 1950s, the US Navy was concerned that the Soviets were building submarines faster than it could build anti-submarine warfare (ASW) destroyers. The solution was to upgrade a large number of old Second World War vessels, but these were too small to operate manned ASW helicopters from. Soviet submarines of the time could fire on ASW destroyers at longer ranges than the destroyers could fire back. A helicopter that could drop homing torpedoes was necessary to allow them to engage first. The answer was the small QH-50 Drone Anti-Submarine Helicopter controlled by the ship’s crew through a line-of-sight data link and able to deliver two MK-44 ASW homing torpedoes where and when required. There were numerous problems and many crashes, but hundreds were built and saw service throughout the 1960s.

QH-50 enthusiasts consider the more pressing operational demands arising from the worsening Vietnam War prematurely killed the unmanned helicopter off, and in this, they may be right. In the second half of the 1960s, there was a significant air war almost daily over North Vietnam. Attacking US Air Force (USAF) and US Navy strike aircraft were pitched against a continually improving Soviet-equipped integrated air defence system featuring the latest SA-2 and SA-3 Surface-to-Air Missile systems. Bomb damage assessment was a real problem; bad weather and the heavy defences made manned aircraft reconnaissance problematic.

A QH-50C anti-submarine drone hovers over the destroyer USS Allen M. Sumner during a deployment to the Mediterranean Sea in 1969. (Source: Wikimedia)

The solution was a fast jet, unmanned aircraft and again hundreds were built, and thousands of sorties flown. These Ryan Lightning Bugs were launched from modified C-130 transport aircraft, flew pre-planned missions and were then recovered using a parachute that was caught in mid-air by a large helicopter. This was an inflexible and expensive way to do business that only fitted the oddities of the Vietnam air environment. With the war’s end in 1975, interest also faded albeit after some trials of armed unmanned aircraft carrying bombs and missiles.

The USAF’s focus shifted to the European Central front then characterised by strong air defences, long-range fighters, a harsh electromagnetic environment and extensive jamming. Launching and recovering unmanned aircraft using slow, vulnerable C-130 transports and CH-53 helicopters in such a hostile air environment looked both very unappealing and most probably operationally ineffective.

The need that drove TDR-1 development however remained. When attacking well-defended targets in a significant war, aircrew survivability was still a real concern. In the late 1970s, the aircrew losses in a new major European War looked as though they would be exceptionally heavy, but there would not be time to bring newly trained aircrews into service as in the Second World War: what should be done? Could armed unmanned aircraft meet the need? After much thought and numerous experiments, the answer adopted instead was to invest sizable funds into high performance manned aircraft equipped with stand-off precision-guided weapons that lowered the sortie numbers required to inflict the necessary damage, field a fleet of electronic warfare attack aircraft able to defeat hostile SAM systems and build secret stealth bombers, the F-117 fleet. This approach was stunningly validated in the short very successful air campaign of the 1991 Gulf War.

Unmanned aircraft lost out not because of aviator biases as some assume but because of their technological immaturity, their relative operational ineffectiveness and their prohibitive costs. Other systems were just plain better. Unmanned aircraft were left as a potential solution in search of a mission. However, the world was about to change.

Dr Peter Layton is a Visiting Fellow at the Griffith Asia Institute, Griffith University. His PhD is in grand strategy, and he has taught on this at the US National Defense University. He is the author of the book Grand Strategy.

Header Image: An Interstate TDR-1 at the National Museum of Naval Aviation, Pensacola, Florida. (Source: Wikimedia)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

#BookReview – Drones and the Future of Air Warfare: The Evolution of Remotely Piloted Aircraft

#BookReview – Drones and the Future of Air Warfare: The Evolution of Remotely Piloted Aircraft

By Wing Commander Travis Hallen

Michael P. Kreuzer, Drones and the Future of Air Warfare: The Evolution of Remotely Piloted Aircraft. New York, NY: Routledge, 2016. Index. Figures. Tables. Appendices. Glossary. Hbk. 258 pp.

‘Drones’ are the air power topic de jour. Unfortunately, much of the discussion taking place in the media, and even in some academic circles, displays a lack of nuanced understanding of what is a complicated subject. The use of the term ‘drone’ to refer to platforms from the networked high-altitude long-endurance MQ-4 Triton to small tactical hand-held systems such as the Black Hornet conflates vastly different capabilities in the mind of the public. Similarly, the statement made in a recent article by a professor at the Swedish Defence University that remotely piloted aircraft (RPA) can ‘strike targets with greater precision to avoid collateral damage’ when compared with inhabited systems highlights that even academics in the field do not appreciate what distinguishes inhabited from uninhabited systems.[1] With the subject often overly simplified and the claims at times unrealistic, it is little wonder that policymakers do not understand RPAs well enough to make informed and effective decisions about their acquisition, development, and employment. This is a problem.

Sailors prepare an MQ-8B MQ-8B Fire Scout unmanned helicopter before performing ground turns aboard the USS Coronado in the South China Sea, 10 February 2017. (Source: US Department of Defense)

A few academics and military professionals are working to clarify the reality of RPA. Michael P. Kreuzer’s 2017 book Drones and the Future of Air Warfare: The evolution of Remotely Piloted Aircraft is one such example. In a compact 218 pages, Kreuzer, a serving US Air Force officer with a PhD from Princeton, places RPAs in their organisational, operational, strategic, and technological context, enabling the reader to reframe their understanding of RPA away from the hype towards an appreciation grounded in facts and logic.

Kreuzer aims the book at:

[t]hose who are active or have an interest at the level of national policy, and for those who have an interest in understanding the macro-effects of RPAs in modern warfare to understand to what extent they can be used to achieve strategic objectives, and what are the true hazards of their use. (p.22)

On this, the book delivers.

The first step is to address the curious definitional problem contained within the book’s title: is it ‘drones’ or ‘remote piloted aircraft’? Kreuzer’s approach to defining the subject is simple yet effective. He states unequivocally that RPA is the preferred term; ‘drone’ when used appears in quotation marks. He then distinguishes between ‘tactical’ RPA and ‘networked’ RPA, with the distinguishing characteristic being the integration of the sensors and weapons of the latter into a global network. Network connectivity has enabled RPAs such as Reaper to conduct ‘strategic bombing against non-fixed targets such as individuals’ (p.7). This, Kreuzer asserts, has made a significant impact on the conduct of air warfare: ‘The network, rather than the platform itself, is key to this innovation’ (p.7)

Kreuzer makes clear that he does not consider RPAs to be revolutionary in isolation; they are an enabling capability for a broader ‘targeting revolution’. To support his claim, he disentangles the often-conflated concepts of technological revolution, major military innovation, and revolution in military affairs:

A technological revolution is marked by a major change in technology with widespread effects across all sectors of society, a major military innovation is a major change in the conduct of warfare that increases the efficiency with which capabilities are converted to power often stemming from the technological revolution, and a revolution in military affairs is a shift in the character of warfare fuelled by a transformation of military systems. (p.8)

The proliferation of drones is undoubtedly a technological revolution; commercial and civilian RPA applications are already affecting airspace management, privacy laws, and delivery services. RPAs are also increasing the efficiency of military operations for both state and non-state actors. ‘Drone strikes’ conducted by the Western countries in the Middle East and South Asia, and the use by ISIS of commercial drones in surveillance and attack roles evidences a shift in the way military operations are being conducted, the rise of the so-called ‘remote control warfare’. RPAs are not, however, causing the changes in the character of air warfare which Kreuzer refers to as the targeting revolution, they are only contributing to it. Kreuzer’s point here is subtle but well made.

Precision munitions and intelligence are given as the key enablers of the targeting revolution. Guided weapons provide the ability to strike targets precisely; the development of networks enables the processing, exploitation, and dissemination of information to know where the targets are. These are the foundations of Kreuzer’s targeting revolution. What RPAs have provided is persistence, allowing improvements in the timeliness of targeting information. The addition of precision munitions on networked RPAs has marked a culmination of an evolutionary process.

[t]he main revolutionary capabilities have come about when RPA serve as critical nodes in a broader system of warfare enabling networked intelligence collection, global communication, near real time processing, target development, decision support, and strike operations. (p.80)

Technology has played a significant role in driving this revolution, but Kreuzer also highlights the importance of doctrine and organisational factors in realising the benefits of RPAs. He looks at two separate but related organisational issues: the organisational challenges in developing an RPA capability, and the influence of organisational capacity on a state’s ability to develop an RPA capability.

According to Kreuzer, the ‘human challenges’ of RPA are:

[s]ome of the greatest faced by states and organisations seeking to employ such weapons and will be the greatest barrier to successful employment. (p.89)

Unfortunately, these challenges are rarely examined in any great depth. This book addresses this deficiency in the literature.

Integrating RPA operators within a culture and hierarchy that favours pilots of manned platforms are proving difficult. Kreuzer draws attention to the disparity in promotion rates for RPA pilots and the controversy surrounding the Distinguished Warfare Medal as examples of how the United States is struggling to integrate RPA systems into existing culture.

The problem faced here is that ensuring the right people are attracted to and employed in RPA operations will be a crucial determinant of their operational success. Similarly, the development of an emerging capability is dependent mainly upon the promotion of RPA operators into positions of influence and power within the organisation. Kreuzer quotes from Stephen Rosen’s 1991 work on innovation arguing that it occurs ‘only as fast as the rate at which young officers rise to the top’ (p.110). This is appropriate, and in this regard, this, and his subsequent discussion on the implications of the ‘tribes of airmen’ and existing organisational culture on the integration of RPAs into the USAF is as applicable to other air forces investigating the development of an RPA capability.

An MQ-1B Predator sensor operator assists a MQ-1B pilot in locating simulated targets during a training mission conducted inside the simulators at Creech Air Force Base, Nevada. Both are assigned to the 11th Reconnaissance Squadron, USAF. (Source: US Department of Defense)

The capacity for militaries to adapt organisationally to the opportunities offered by RPAs will also determine the diffusion and proliferation of the capability. This is one of the most important points raised in the book. Drawing on Michael Horowitz’s adoption-capacity theory, Kreuzer predicts the rate of diffusion of RPA technology and the type RPA likely to be developed by states based on the state’s ‘financial intensity and organisational capacity available to implement major military innovations’ compared with their ‘perceived strategic imperative to develop innovation’ (p.157). His prediction is succinctly captured through an analogy with established air power capabilities: ‘it is easier to think of networked RPAs like strategic bombers (which few countries adopted) and tactical RPAs like attack helicopters, which are common worldwide’ (p.5). The organisational and financial costs of acquiring and maintaining networked RPAs creates high barriers to entry for this capability. Unless a state has compelling operational/strategic requirements or is willing to invest in a prestige capability, as some states have done with aircraft carriers, networked RPA proliferation will be limited to only a few states (p.184). Kreuzer’s logic is sound and well-argued; as with all predictions it may eventually prove to be wrong, but his matrix of probable RPA diffusion provides an excellent starting point for the discussion of RPA proliferation.

Overlaying questions of innovation and organisational adaptation is the contribution RPAs make to air warfare. Much has been written and discussed about the impact of RPAs on the conduct of military operations, but the majority of this discussion conflates platform with strategy. As Kreuzer puts it:

Too often, debates over RPAs ignore or write off counterfactual means of military intervention and criticise RPAs for traits that would be similarly exhibited by alternative means of conflict. In many cases, attacking the RPA becomes a substitute for attacking the underlying policy, which is an unnecessary distraction from the real debate which should be made. (Emphasis added) (p.21)

The question of RPAs impact on air power permeates all aspects of the book, which is not surprising given the book’s title; however, the way in which Kreuzer does this provides the book with utility beyond the narrow subject of RPA.

In discussing the importance of RPAs in the realisation of the targeting revolution, Kreuzer explores and analyses the strategic implications of targeted killings and signature strikes. His analysis goes beyond the use of armed RPAs and is just as applicable to the employment of manned platforms. Kreuzer highlights, quite correctly, that the developments of information age air warfare are challenging existing international legal treaties and norms, but to focus solely on RPAs is a distraction as these are issues of modern warfare generally which go beyond the question of having a human in the cockpit. The legality and ethics of these types of operation is a vexed issue, but the book’s treatment is balanced, considered, and informative.

Operationally, the employment of RPAs has already raised several questions relating to sovereignty, and the implications of airspace violations and the subsequent shoot-down of RPAs operating in sovereign or disputed airspace. Recent events in Israel have raised this issue in the public consciousness. Kreuzer’s examination of this topic looks beyond the usual case studies of US operations in Pakistan’s Federally Administered Tribal Areas (though these are also discussed) to include RPA operations in the Caucasus and the Middle East. The use of RPAs by Georgia, Azerbaijan, and Hiz’ballah, and their subsequent shoot-downs by the Russians, Armenians, and Israelis respectively, provided test cases for the international community to consider the legal and strategic ramifications of airspace violations by uninhabited systems. The shoot-down of relatively expensive RPAs followed by reprimands from the international community for airspace violations demonstrate that RPAs have not changed the existing norms of airspace sovereignty. This does raise the question of US operations in Pakistan, but this subject is also well covered by Kreuzer.

Finally, Kreuzer addresses one of the perennial problems for airmen which has been exacerbated by the development of RPA: people just don’t get air power.

For all the attention airpower receives in modern war, it remains one of the least understood systems of war for outside observers […] for the average reader with a basic interest in what airpower means the subject is abstract, complex, and often subject to detailed debates about tactics and airframes rather than broader strategic implications. (p.198)

The lesson for air power professionals, scholars, and advocates is clear: more needs to be done to improve the way that air power is explained and articulated to the public. Kreuzer’s book is an excellent example of how this can be done.

Drones and the Future of Air Warfare is a must read for anyone involved in the decision to acquire, develop, and/or employ RPAs as it lays the conceptual foundation which should inform any decision to invest in an RPA capability. It would be wrong, however, to view the book solely as a treatise on RPAs. By placing the subject within their broad operational and organisational context, Kreuzer also provides insightful and informative commentary on military innovation, organisational design, capability development, and air power strategy. Accordingly, Drones and the Future of Air Warfare can rightfully be considered an analysis of the current state and future evolution of air power. It will, therefore, make an excellent addition to any air power professional’s reading list.

Wing Commander Travis Hallen is an Air Combat Officer currently serving as Deputy Director – Air Power Development at the Royal Australian Air Force’s Air Power Development Centre. He is also a Sir Richard Williams Foundation Scholar. The opinions expressed are his alone and do not reflect those of the Royal Australian Air Force, the Australian Defence Force, the Australian Government, or the Williams Foundation. He can be found on Twitter at @Cold_War_MPA.

Header Image: The MQ-4C Triton unmanned aircraft system completes its first flight on 22 May 2013 from the Northrop Grumman manufacturing facility in Palmdale, California. The 80-minute flight successfully demonstrated control systems that allow Triton to operate autonomously. Triton is designed to fly surveillance missions up to 24-hours at altitudes of more than 10 miles, allowing coverage out to 2,000 nautical miles. The system’s advanced suite of sensors can detect and automatically classify different types of ships. (Source: Wikimedia)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

[1] Arash Heydarian Pashakanlou, ‘Air power in humanitarian intervention: Kosovo and Libya in comparative perspective,’ Defence Studies, 18:1 (2018), p. 52.

Inventing the Enemy: Colonel Toon and the Memory of Fighter Combat in Vietnam

Inventing the Enemy: Colonel Toon and the Memory of Fighter Combat in Vietnam

By Dr Michael Hankins

A recent post on the popular website The Aviation Geek Club told the story of what they called ‘the most epic 1 v 1 dogfight in the history of naval aviation.’[1] This is the story in which Lieutenants Randy ‘Duke’ Cunningham and William Driscoll, from among the first batch of graduates from the US Navy’s then-new Top Gun training program, shot down the number one North Vietnamese Air Force fighter ace, Colonel Toon, and became the first American aces of the war. Very little of that tale is true, but it makes for an exciting story, and this website is not the first to tell it. Although the details of these claims bear some scrutiny, the tale raises more interesting more significant questions about how and why legends like this form and grow over time.

Cunningham and Driscoll meet with Secretary of the Navy John Warner and CNO Admiral Elmo Zumwalt
Lieutenant Randy Cunningham (second from left) in a ceremony honouring him and Lieutenant William Driscoll (third from left), the US Navy’s only Vietnam War air ‘Aces’ in June 1972. On the left is John Warner, then Secretary of the Navy, and on the right is Admiral Elmo Zumwalt, then Chief of Naval Operations. (Source: Wikimedia)

Combat situations breed storytellers. Any stressful, exciting, death-inducing human endeavour does. Perhaps even more so among fighter pilots engaging in acrobatic dogfights at near (or above) the speed of sound, combat stories, as they are told and retold, heard and re-heard, become legendary. Especially enticing is the need to explain defeat or even a lack of decisive victory. During the Vietnam War, skilled North Vietnamese pilots shot down US aircraft in numbers that some Americans found embarrassing. The final official tally of air-to-air combat kills was 137 to 67, almost exactly 2:1 in favour of the US. This sounds like a victory to some. Indeed, General William Momyer, Commander US Seventh Air Force, saw it that way when he recalled later that winning by 2:1 was ‘an acceptable rate.’[2] However, it did not seem acceptable to those who drew historical comparisons. The US had fared better in previous wars, peaking in the Korean War, which saw US F-86 pilots defeating MiG-15s by a factor of more than 10:1.[3] By those standards, Vietnam felt like a massive step backwards.

Explaining the seeming backslide in combat performance was the official task of several investigations, from the US Air Force’s Red Baron Reports to the US Navy’s Ault Report. Pilots ranted about the poor performance of their planes, especially the F-4 Phantom’s thick black smoke trails that gave away its position to anyone caring to look up. Pilots scoffed at the lack of training in basic combat manoeuvring, much less dogfight training. They decried the fact that only ten percent of their missiles hit anything, and that their F-4s lacked the most basic instrument of air combat: a gun. Without a trigger to pull, many argued, how were they supposed to shoot anyone down?

Other pilots took to creating legends. What could explain the fact that so many US aircraft were getting shot out of the sky by an allegedly inferior, third-world country’s hand-me-down air force that only had a few dozen aeroplanes to its name? There must be an amazing, inexplicable, near-mythical, born-genius dogfighter on the enemy side.

Thus, was born the legend of Colonel Toon, AKA Colonel Tomb, AKA Nguyen Tomb.

Telling the Tale

As the legend goes, Toon was more than a double ace, with at least twelve kills to his name, maybe as high as 14, which was how many stars were allegedly painted on the side of his MiG. Toon displayed the typical fighter pilot personality characteristics of aggressiveness and independence. He utilised frequent head-on attacks and a ‘lone wolf’ style of engaging in which he refused to obey the orders of his ground controller and engaged F-4s in vertical manoeuvres, where his MiG was at an inherent disadvantage.[4] According to the typical story, as American pilots struggled, the US Navy’s Ault Report had led to the introduction of Top Gun: a graduate school for fighter pilots. The intensive training there gave US Navy aviators the skills to destroy MiGs wherever they found them. Moreover, allegedly, Top Gun graduates Cunningham and Driscoll used their newly found skills to shoot Toon out of the sky on 10 May, during a massive dogfight at the beginning of Operation Linebacker. Cunningham claimed this himself, and the story is still often repeated in popular outlets.[5]

There is just one problem: almost none of this is true. Top Gun, although undoubtedly useful, was, at the time, a tiny outfit that many leaders in the US Navy did not take seriously. The narrative of Top Gun as the saving grace of air-to-air combat also ignores all of the other useful changes instigated by the Ault Report, as well as other practices the US Navy was doing at the time. These included enhancements to their aircraft, upgraded missiles, the increased reliance on early warning radar systems that gave pilots situational awareness, and the increase in jamming of enemy communications that limited North Vietnamese situational awareness.[6] Besides that, Cunningham and Driscoll were not even Top Gun graduates. Moreover, what of Colonel Toon? He was simply not real. He did not exist.

NVAF MiG-19 pilots of the 925th fighter squadron discussing tactics in 1971
North Vietnamese Air Force MiG-19 pilots of the 925th fighter squadron discussing tactics in 1971. (Source: National Museum of the United States Air Force)

Busting Myths

To unravel these tales, let’s start with Cunningham and Driscoll at Top Gun. The principal disputed aspect of the common claim hinges on the word ‘graduates.’ Cunningham and Driscoll had not been students at Top Gun, but they were involved with the school. Before the start of Operation Linebacker in 1972, Top Gun was in bad shape. It had struggled and fought to get access to aeroplanes to train in, and throughout 1971 most of the instructors assumed it was only a matter of time before the US Navy would shut the place down.[7] With limited student slots, selection for Top Gun was competitive. Only the top-performing pilots of select squadrons were picked, and Cunningham had simply not made the cut – twice. Cunningham’s roommate Jim McKinney, and later Steve Queen, both of whom were his colleagues in VF-96, were selected ahead of him. This was in part because they were viewed as more skilled, partially because Top Gun selection favoured career officers the US Navy could count on to stay in the service after the war, which did not, at that time, describe Cunningham. Also, as his skipper noted, Cunningham was simply immature. Top officers and those selected for the coveted Top Gun training needed to be more than just typical fighter jocks, they needed to be well-rounded officers capable of strong leadership. Cunningham’s commander did not see those qualities in him.[8] His fellow pilots noted the same lack of leadership. When Cunningham later pled guilty to taking millions of dollars in bribes as a congressman, those that served with him said they were ‘not necessarily surprised,’ because even when he was a pilot during the war, he had shown a remarkable lack of officership. Some noted that Cunningham was ‘a mind undistracted by complicated thoughts.’[9]

Cunningham and Driscoll
An autographed picture of Lieutenants Cunningham and Driscoll (Source: Randy Cunningham and Jeff Ethell, Fox Two: The Story of America’s First Ace in Vietnam (Mesa, AZ: Champlin Fighter Museum, 1984)

Just because Cunningham was passed over for Top Gun does not mean he was not participating in some way. In 1971, during his squadron’s turnaround period, Cunningham was assigned to temporary duty at Top Gun as a ‘gopher,’ mostly doing paperwork for the school. However, it gave him a chance to listen to some of the lessons and occasionally sit in the backseat of adversary aircraft. He spent much time with the Top Gun instructors, including Jim Laing, J.C. Smith, Dave Frost, and Jim Ruliffson. The squadron then went on leave for a month, during which time Cunningham’s new commanding officer, Early Winn, permitted him to run exercises in the squadron’s F-4 Phantoms since they would be sitting idle for that time. Cunningham used the opportunity to practice what he had learned from his informal lessons. Upon returning from leave, the whole squadron became the first to go through the new Fleet Adversary Program, which some described as ‘mini-Top Gun.’ Primarily the program was a short workshop that introduced some of the concepts that Top Gun explored in more detail. VF-96 ran the workshop twice before returning to Vietnam.[10]

The claim that Cunningham and Driscoll were Top Gun graduates, as is often repeated, is false, but it is easy to see why many might be confused about that. Indeed, in an ad hoc sense, the pair had some access to higher level training than others, including Top Gun instructors. The other claim; that the duo’s fifth kill was the legendary Toon – or that there even was a Toon – is much more dubious.

Part of the confusion comes from the insistence of US SIGINT (Signals Intelligence) by the National Security Agency (NSA) that Toon was real. Claiming to have cracked the North Vietnamese callsign system, the NSA, intercepting enemy communications, began keeping track of individual pilots. They especially singled-out a North Vietnamese MiG-21 ace pilot named Toon, based at Phuc Yen, who developed a reputation for aggressively disrupting B-52 raids. They referred to him as ‘The Red Baron of North Vietnam,’ or ‘an airborne outlaw in the image of a Wild West gunslinger,’ who, whenever he was spotted, ‘U.S. planes took up the chase like some sheriff’s posse of old.’ The NSA claimed that Momyer was ‘obsessed’ with destroying Toon.[11] This could be possible, although it is strange then, that Momyer does not mention Toon at all in his book on the subject.

Cunningham’s debriefing report from 10 May 1972 – in which he very carefully words his statement to give the reader the impression that he was a Top Gun student without stating that directly – has ‘The 5th Kill (Col. Tomb)’ typed in the margin. After describing the dogfight, he claimed:

Intelligence later revealed that this 17 driver was Colonel Tomb, the North Vietnamese ace credited with 13 U.S. aircraft.[12]

Cunningham did not identify who told him this, and his claim raises questions, as it seems to contradict the intelligence from the time. The NSA referred to this pilot as ‘Toon,’ not ‘Tomb,’ and did not identify him as a Colonel. The NSA also specified him as a MiG-21 pilot whereas the Cunningham kill was a -17. They also credited Toon with five kills, not the 13 that Cunningham referenced. Furthermore, the NSA report states that Toon was never defeated, and eventually was promoted out of combat flying and became a ground controller.[13] Cunningham might be telling the truth that some intelligence source, which he does not identify, told him that the -17 he killed was Tomb, but because his claims are so at odds with the NSA’s information on nearly every point, Cunningham’s story raises more questions than it answers.

Mikoyan-Gurevich MiG-17F
A Mikoyan-Gurevich MiG-17F at the National Museum of the United States Air Force. (Source: National Museum of the United States Air Force)

However, the NSA could also be wrong. In fact, they probably are. Even though the NSA claimed Toon was real at the time, there is little evidence to verify this. Indeed, any ace pilots that North Vietnam had – and eventually they had fifteen that were confirmed by US sources, though Vietnamese records claim sixteen, which was triple the number of US aces – would be of immense propaganda and morale value for their cause. If Toon were real, he would likely have been celebrated as a national hero. When researchers and former pilots began talking to North Vietnamese veterans, any questions about Toon were met with confusion. There’s no record of a Toon or Tomb, which is not even a Vietnamese name. Some have claimed that ‘Toon’ was the result of SIGINT operators mishearing the name of Din Tonh, who was an effective pilot known for ‘lone wolf’ attacks. However, Tonh also flew the MiG-21, not the -17, and was not an ace, much less one with kills in the double digits.[14]

Historian Roger Boniface travelled to North Vietnam and conducted extensive interviews with former MiG pilots. His conclusion? Toon was merely an invented figment of American fighter pilots’ imagination, made up specifically to stroke their damaged egos. As he put it:

The existence of Colonel Toon in the mind of an American pilot may have provided a psychological comfort zone if a North Vietnamese pilot should out-fly him or, even worse, shoot him down.[15]

NVAF ace pilot Nguyen Van Coc meeting with Ho Chi Minh
Nguyen Van Coc meeting Ho Chí Minh, N.D. (Source: Wikimedia)

The closest real pilot to fitting the description, however, was Nguyen Van Coc. He flew a MiG-21 with 14 ‘kill’ stars painted on the side. Vietnam officially credits Van Coc with nine kills of US aircraft, and the US has officially recognised six of them. Still, Van Coc cannot have been the ace-making kill for Cunningham and Driscoll, not only because he flew MiG-21s, but by 1968 he had already been pulled out of combat duty and made an instructor of new North Vietnamese pilots.[16]


Why does this controversy – and others like it – continue to plague the memory of the Vietnam War? Possibly because losing a war is psychologically devastating. This is evident simply in how divisive it is to call the American-Vietnam War a ‘loss’ for the US. Some are reluctant to do so in any terms, but no one can deny that the US did not achieve its strategic goal of creating a stable, independent, non-communist South Vietnamese state. Indeed, North Vietnam did achieve its goal of creating a unified communist state. However, the air-to-air war was not at all the make-or-break factor in any of that. The US did not fail in their goals because of the MiG force. Also, former war records aside, Momyer was not wrong to claim that a 2:1 kill ratio in air-to-air combat is still a victory, in at least a technical definition although the ability of MiGs to frequently interrupt bombing strikes was a more significant problem. Despite these clarifications, Vietnam felt like a loss even to many air combat pilots. Explaining that sense of loss, or even just a sense of a lack of decisive victory is difficult at best. Many pilots, and some historians and observers since, including Cunningham and Driscoll, found it easier to invent an enemy rather than must deal with those painful feelings head-on. This is not an isolated phenomenon. Nearly every war sees these types of inventions as a coping mechanism. Toon may not exist, but what he represents as a way of dealing with the psychological trauma of warfare, is all too real.

Dr Michael Hankins is an Assistant Editor at From Balloons to Drones and a Professor of Strategy at the USAF Air Command and Staff College eSchool. He is also a former Instructor of Military History at the US Air Force Academy. He earned his PhD from Kansas State University in 2018 with his dissertation, ‘The Cult of the Lightweight Fighter: Culture and Technology in the U.S. Air Force, 1964-1991.’ He completed his master’s thesis at the University of North Texas in 2013, titled “The Phantom Menace: The F-4 in Air-to-Air Combat in the Vietnam War.” He has a web page here and can be found on Twitter at @hankinstien.

Header Image: US Navy McDonnell Douglas F-4J Phantom II ‘Showtime 100,’ which was assigned to VF-96 of Carrier Air Wing 9 onboard USS Constellation Lieutenants Randy Cunningham and William Driscoll used this aircraft for their third, fourth, and fifth MiG-kills on 10 May 1972. (Source: Wikimedia)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

[1] Dario Leone, ‘Showtime 100 Vs Colonel Toon: the most epic 1 V 1 dogfight in the history of naval aviation,’ The Aviation Geek Club, 9 May 2018

[2] William W. Momyer, Air Power in Three Wars (Maxwell AFB, AL: Air University Press, 2003), p. 178.

[3] For example, see: Kenneth P. Werrell, Sabres Over MiG Alley: The F-86 and the Battle for Air Superiority in Korea (Annapolis, MD: Naval Institute Press, 2005).

[4] Roger Boniface, MiGs Over North Vietnam: The Vietnam People’s Air Force in Combat, 1965-75 (Mechanicsburg, PA: Stackpole Books, 2008), p. 59, 74.

[5] For Cunningham’s claim, see: Randy Cunningham and Jeff Ethell, Fox Two: The Story of America’s First Ace in Vietnam (Mesa, AZ: Champlin Fighter Museum, 1984), pp. 107-8.

[6] For a more in-depth look at some of these changes in both the US Navy and the USAF, see Michael Hankins, ‘The Teaball Solution: The Evolution of Air Combat Technology in Vietnam 1968-1972,’ Air Power History, 63 (2016), pp. 7-24.

[7] Robert Wilcox, Scream of Eagles (New York, NY: Pocket Star Books, 1990), pp. 203-6.

[8] Ibid, pp. 207-8.

[9] Alex Roth, ‘Shooting down Cunningham’s legend: Ex-comrades in arms say disgraced congressman was a good fighter pilot but a poor officer with flair for self-promotion,’ San Diego Union Tribune, 15 January 2000.

[10] Wilcox, Scream of Eagles, pp. 210-12; Cunningham, Fox Two, p. 106.

[11] ‘On Watch: Profiles from the National Security Agency’s past 40 years,’ National Security Agency, 1984, declassified 2007, pp. 58-9.

[12] US Air Force Academic Library, Lieutenant Randy Cunningham, ‘Naval Intelligence Debriefing of 10 May 1972 MiG Engagement by VF-96,’ 10 May 1972, pp. 5-6.

[13] ‘On Watch,’ pp. 58-9.

[14] Sebastien Roblin, ‘The Legend of the Vietnam War’s Mystery Fighter Ace,’ War is Boring, 3 July 2016.

[15] Boniface, MiGs Over North Vietnam, p. 74.

[16] Ibid.; Roblin, ‘The Legend of the Vietnam War’s Mystery Fighter Ace.’

The Challenges of Fifth-Generation Transformation

The Challenges of Fifth-Generation Transformation

By Wing Commander André Adamson and Colonel Matthew Snyder

Plan Jericho, published in 2015, outlined a strategy that would transform the Royal Australian Air Force (RAAF) into a fifth-generation air force by 2025 which, if delivered on schedule, would make it the world’s first. This transformation is not based on merely the possession of the next generation of aircraft technology including the F-35A, P-8 Poseidon, EA-18G Growler and E-7A Wedgetail, but on a reconceptualisation of the RAAF as an integrated, networked force. Significantly, this new operating concept is based on working in a highly collaborative manner with the Australian Army, Royal Australian Navy, industry, and allies – especially partners in the F-35 programme – to achieve the full potential of the new technologies, and to ensure that the networked force can work effectively with them.

The Australian plan has given many air forces pause for thought. That an air force comprising fewer than 15,000 regular personnel is seeking to transition to an entirely fifth-generation air force within the next decade to meet its strategic and security objectives demonstrates an undertaking to conduct future air operations in a conceptually different way. The commitment to a similar transformation among other F-35 partners is firmly underway – both the US Air Force (USAF) and Royal Air Force (RAF) have pledged to transition to fifth-generation air forces.[1] In contrast, for air forces that are not committed to a fifth-generation programme, or the transformational concepts that underpin it, the time is rapidly approaching where a hard-nosed evaluation and decision will need to be made on where they want to be as an air force in the next 10-15 years. The choice is tactical, strategic, and political.

An E-7A Wedgetail from No. 2 Squadron RAAF sits on the tarmac at Nellis Air Force Base, Nevada, during Exercise Red Flag 18-1. (Source: Australian Department of Defence)

Since the inception of the Joint Strike Fighter (JSF) precursor of the F-35 in the mid-1990s, there has been a broad, often polarised, and inevitably highly charged debate surrounding the programme. Over the past decade, as the first prototypes took to the air, this debate focused on cost – perhaps unavoidably given that it is the most expensive military project in history. As the aircraft subsequently moved into its production phase, attention shifted to technical problems with engines, software, and its data fusion capabilities. More recently, however, supporters of the F-35, not least the international partners themselves, have highlighted successes that indicate that the programme may have now turned a corner. These successes include the declaration of initial operating capability (IOC) by the US Marine Corps and USAF, production rates steadily increasing, encouraging feedback from the increasing number of F-35 pilots, and an impressive performance in exercises.

Although these positive developments may not entirely amount to a ‘game changer’, they arguably represent significant steps forward in the delivery of the fifth-generation capability. It is, therefore, useful to frame the debate regarding a new template: that of a capability that is, if not yet fully validated, nonetheless in the process of being delivered to partners, tested in increasingly challenging scenarios, and moving towards full operational capability (FOC). This article analyses some of the stakes involved as this capability increasingly acts as a driver for fifth-generation transformation, and to consider some of the implications for air forces that have committed to fifth-generation programmes and, perhaps more significantly, for those that have not.

Defining Fifth Generation

Most people are now familiar with the term fifth-generation as the naming convention most often used when discussing this next generation of fighter aircraft. Although there is no specific or formal definition of what constitutes a fifth-generation fighter, it is routinely accepted that those aircraft that are designed and capable of operating in highly contested operational environments. To be able to do so it is accepted that the platforms must have not only low-observable features inherent in the design of the aircraft but also onboard radar and sensor features that include low-probability of intercept and low-probability of detection. They also must possess highly sophisticated self-protection and jamming systems combined with advanced avionics and powerful computers. This integration has allowed the evolution of a capability to fuse both onboard and off-board data without the involvement of the pilot. These aircraft are, therefore, able to feed real-time information autonomously into the joint operational network, significantly increasing the awareness and reducing the decision time of commanders. It is, therefore, essential to define a fifth-generation system not just as a fighter but as a system able to operate in a networked and integrated manner. Fifth-generation systems fundamentally revolve around powerful fusion capabilities which enable fusion of data to create a highly accurate picture of the battlespace independently of an operator.

These new systems present clear operational advantages over older platforms. In the ever-increasing high-threat environment characterised by modern integrated air-defence systems (IADS), fifth-generation platforms can operate where non-fifth-generation platforms cannot. Their ability to work cooperatively and talk with other platforms in the battlespace transforms even a limited number of assets into significant force multipliers and force enablers. Thus, the F-35 is not only an air asset; it is also a collection platform which can interact with, and provide data to, both ground and maritime forces. However, possession of such an advanced platform comes at a considerable price. It is complicated to take a non-stealth platform and make it stealthy. Therefore, not only does a country need to sign up to make a significant financial commitment to purchase a fifth-generation platform such as the F-35, but significant investment is required elsewhere, such as in new maintenance facilities and the robust data networks that are necessary to exploit its full capabilities. It is worth briefly reviewing the reasons for the decision to commit to the F-35 programme for those states that have joined.

The Partners and Why they Joined the F-35 Programme

Nine countries originally signed up as partners to the JSF programme, the precursor to the F-35: the US; the UK; Australia; Canada; Italy; The Netherlands; Norway; Turkey; and Denmark. Three others committed through Foreign Military Sales: Israel; Japan; and South Korea. As the most expensive military development and procurement plan in history, the F-35 has attracted a great deal of controversy since the development contract was signed in November 1996. From its conception, the JSF was to be an international co-development programme, a decision that was driven by several factors. All the partners were either NATO countries and/or close US allies, and there was, from the outset, a clear imperative for interoperability and interconnectivity in coalition-based air operations. The partners had been operating a range of different platforms of varying levels of capability, and the F-35 enabled them to operate the same aircraft with all the evident advantages that it brings regarding interoperability, training, logistics, among others. Furthermore, the partners were all involved, to varying degrees, in the design, building and testing of the aircraft. This was a unique element of the programme that helped maintain domestic hi-tech military industries. The UK, for example, was the only Tier 1 partner and is responsible for 15 percent of the aircraft, worth an estimated £30 billion over the lifetime of the programme sustaining 24,000 jobs. The European F-35 production facility in Cameri, Italy, is projected to bring $15.8 billion of economic benefit to the Italian economy.[2]

The F-35 programme and the cooperative and industrial advantages it confers are, however, as described above, more than the next-generation platform conceived at the outset of the JSF programme. The F-35 represents a commitment by the partner air forces to exploiting a range of new, highly advanced capabilities that constitute a step change in the gathering, processing, and sharing of information, particularly in contested environments. Indeed, it is the recalibration of strategic and operational thinking that has been driven by the requirement to operate in those increasingly contested environments, and against near-peer adversaries, which has proved so persuasive in winning the argument for the fifth-generation partners. It has required a shift in thinking and a reconceptualisation of the conduct of air operations in the joint and combined environment through the significantly enhanced surveillance, command and control, and information sharing that fifth-generation capabilities provide. It also compels fifth-generation air forces to integrate and network with land and maritime forces in an unprecedented way – next-generation air forces will require next-generation joint forces.

F-35 sortie
An F-35 Lightning II performs a maneuvre on 12 September 2016 over Luke Air Force Base. This sortie marked the 10,000th flying hour for the F-35 program at Luke. (Source: US Department of Defense)

The countries that committed to the F-35 programme did so over 15 years ago following the first flight of the prototype X-35B. As described above, motivations at the time were primarily centred on the requirement of those air forces to replace their legacy fleets, or to run those fleets alongside platforms that exploited the latest technological developments, including stealth. The potential of those technologies has evolved significantly over the subsequent years, often beyond the original expectations and understanding, and those air forces which are part of the programme are now beginning to take delivery of a capability that represents a genuine generational change. The geopolitical context has also evolved over that period and, following 15 years of assumed air superiority in Iraq and Afghanistan and the counterinsurgency operations that followed, the air forces that will be using the F-35 are discovering that they have a capability that is credible in contested environments. However, most of those air forces have equally begun to realise that having a fifth-generation aircraft does not merely equate to having a fifth-generation capability as defined above. Although the US Marine Corps declared IOC in 2015 and the USAF in August 2016, there are still significant challenges to be addressed, both technically and conceptually, before the declaration of a genuinely fifth-generation FOC. Furthermore, there are undoubtedly continuous and continuing problems in the development of the F-35 itself, as might be expected in a programme of such size and complexity and the programme is, by some order of magnitude, the costliest in the Department of Defense’s history.[3]

Implications for F-35 Partners of Integrating Fourth- and Fifth-Generation Fighters

F-35 deliveries are now firmly underway with over 200 jets flying, most of the partners operating their aircraft and production rates scheduled to exceed 60 per year soon. This puts considerable pressure on those partner countries and Foreign Military Sales customers to prioritise the elements that will allow them to realise the full force-multiplier potential of the aircraft. This includes the enhanced data management, connectivity and bandwidth upgrades required to operationalise and fully exploit the capability that fifth-generation aircraft offers for information-centric warfare and cross-platform connectivity.

In this regard, the F-35 has a ‘forcing function’ for militaries looking to adopt a fifth-generation standard. Naval and ground forces stand to benefit significantly from the network-centric, cross-platform, multiple-shooter concept of operations of which the F-35 will form such a significant element. As Justin Bronk suggested, given the almost unlimited scope of connecting the F-35 to every system in the battlespace, joint force commands will be compelled to invest in the connectivity and bandwidth for the platforms that stand to provide the most significant increase in combat power and flexibility.[4] This will drive the development of fifth-generation joint forces, a concept that has significant potential, particularly in contested environments. It also is a critical element of underpinning programmes such as Plan Jericho – the transformation to an integrated networked joint force that has combat power much more significant than the sum of its parts.

Whereas the RAAF is looking to upgrade its entire legacy fleet over the next decade, most of the F-35 partners, including the USAF, will need to run their legacy fleets alongside their fifth-generation platforms for some years beyond that. The RAF and Italian Air Force, for example, possess the highly capable Typhoon, a fourth-generation aircraft with high performance, an active scan radar, Link 16, and a comprehensive air-to-air and air-to-ground weapons suite. As Bronk pointed out, in such cases investment in the F-35 and Typhoon should not be seen as a binary choice as ‘each aircraft offer strengths to complement the other’s capabilities. The combination of F-35 and Typhoon can be far more potent than a force composed entirely of either type in many operational scenarios’.[5]

As a US-led, but highly collaborative, programme, development of the F-35 has drawn the partners together. The sharing of technologies, concepts, tactics, training, maintenance, logistics, and procedures represent a significant opportunity for fifth-generation air forces. With the F-35 being operated by so many states there are also substantial prospects for tactical, technical, and conceptual innovation which will allow the aircraft to be highly ‘future-proof’ without compromising issues such as sovereignty, national defence industries or strategic autonomy. All these elements contribute to powerful forces drawing the F-35 partners into what might be described as a fifth-generation ‘club’. The level of international cooperation is unprecedented, with pilots training together at the F-35 multinational pilot training centre at Luke Air Force Base in Arizona, maintenance facilities being developed in Italy, Turkey, Norway and The Netherlands, and a global logistics supply chain. The result is a deepening of cooperation between the partner air forces, many of whom already possess a strong ability to do so through links forged over the years through NATO and operating in coalitions since the end of the Cold War.

Implications of Integrated Fourth- and Fifth-Generation Air Forces for Countries that are not F-35 Partners

Air forces that have not yet committed, or do not have current plans to transition to fifth-generation systems, will need to consider the operational and strategic implications of such decisions. Four areas should be considered considering future military operations: the ability to engage near-peer adversaries in a high-intensity environment; the military status and political parity with allied countries; the integration and collaboration capabilities with partner forces; and the potential limitation of the depth and breadth of defence technological innovation.

One of the UK’s first F-35B Lightning II aircraft takes off from Eglin Air Force Base, c. 2014. (Source: UK Ministry of Defence)

As previously discussed, fifth-generation systems are not merely about employing stealth attributes, but rather about harnessing the substantial advancements in processing ability and data fusion capabilities inherent in such systems. Tellingly, the aim is to create and operate a networked environment where the lines are seamless between sensors, shooters, and operators. As a result, air forces that do not possess these capabilities are likely to find themselves increasingly relegated to a supporting rather than a leading role in planning for, and executing, future contingency operations. Countries that are not able to contribute and operate effectively in high-threat environments will potentially find themselves not on an equal footing with their coalition partners, a position that may compromise their role in military operations and, increasingly, political decision-making. Except for Australia, all the original nine partner countries are NATO members, allowing the smaller air forces of the Alliance – such as Spain and Belgium – to mitigate the limitations of their continued reliance on fourth-generation assets by optimising the capabilities of the F-35 with their legacy platforms in a NATO context. For larger Western countries not in the F-35 programme – such as France and Germany – there will be pressure to prioritise the optimisation of their existing platforms with the capabilities of the F-35. France faces the challenge of preserving its much-valued strategic autonomy, continued global aspirations and protection of its defence industrial base in the context of fifth-generation transformation. In his evidence to French MPs last year the Chief of the French Air Force, General Lanata, warned that, in less than five years, the F-35 would become the standard for operating in the most demanding operational scenarios, and that it would bring to a head the decision as to whether an air force can engage in those scenarios in the future.[6]  In short, without fifth-generation aircraft, an air force risks being in a supporting role in a coalition air environment and will require a fifth-generation partner to provide mission success against a near-peer adversary.

Finally, the benefits of privileged access to the highest level of military technology enjoyed by the F-35 are substantial. The highly collaborative nature of the programme ensures that technology transfer occurs at an unprecedented scale and provides a wealth of opportunities for hi-tech defence industries across the partner countries. The fact that so many states will operate the F-35 will also boost the opportunities for innovation in disciplines such as engineering and avionics, as well as tactics and concepts. For air forces outside of the programme, technological advances can, of course, be pursued at the national level but they will not benefit from the exchange of ideas, concepts and innovation that are generated by this collaborative programme.


This article has articulated some of the critical implications for air forces committed to a fifth-generation programme centred on the F-35 and for those that have not. After a decade and a half of delays, setbacks, and bad press, the F-35 programme and the technological advancements linked to it are gathering momentum. The programme is driving the partner states not just to unprecedented levels of military cooperation and convergence but also developing the networked joint forces necessary to operate in an increasingly contested environment. For states that have chosen to not participate in the fifth-generation programme, the challenges will be tactical, strategic, and political.

At a tactical level, operators of legacy fleets will struggle to interoperate effectively with the F-35 and other fifth-generation assets and indeed may degrade the effectiveness of coalition operations centred on fifth-generation systems. Furthermore, they may well be restricted to operating only in semi-permissive environments with a low IADS threat. At a strategic level, air forces that do not operate fifth-generation platforms may face the challenge of not being considered on an equal footing with the F-35 partners who, within a decade, are likely to have developed means to fuse, process, distribute and exploit data that will out-pace anything that even updated legacy fleets can match. At a political level, the range of credible options available to a national executive in the context of a highly contested environment against a peer competitor risk being limited. There will, therefore, be an increasing onus on air forces not operating fifth-generation platforms to articulate a credible and conceptually coherent ‘offer’, what they can contribute to a fifth-generation-led coalition, for example, to justify their status at each level. This will be a point that will not be lost on many who look to avoid the risk of fourth-generation air forces being restricted to a supporting role in the air environment against a near-peer.

Furthermore, partners in fifth-generation system development are pushing the boundaries of collaborative networked systems and transforming military operations. The ‘forcing function’ – the incentives generated by the F-35 for further technological developments and integration – provides a potent impetus for change and innovation among the fifth-generation partners. Conversely, countries not actively involved in fifth-generation transformation are starting to face a capability gap that will only continue to widen over the next decade. Other means – political, financial, or industrial – will be needed to drive the change necessary to mitigate the divergence or offset its effects. Set against these challenges, these air forces might argue that their national security priorities over the next 10-15 years are perfectly well met by remaining outside the F-35 programme and the fifth-generation capabilities of which it is a core element. An approach such as this relies on updating fourth-generation assets in the short term and developing other solutions either nationally or in collaboration with other partners for deployment beyond the 2035 timeframe. They might also credibly contend that legacy assets are inherently less vulnerable to disruption of the networks on which fifth-generation platforms rely and that the significant costs associated with the programme could be more effectively apportioned elsewhere to meet those national priorities.

The arguments presented in this article suggest, however, that the implications of this approach in the longer-term are potentially severe and that there will be, eventually, a cost regarding capability, operational effectiveness, technological superiority, and status. Writing in 1989, William Lind et al. wrote that ‘whoever is first to recognize, understand, and implement a generational change can gain a decisive advantage. Conversely, a nation that is slow to adapt to generational change opens itself to catastrophic defeat.’[7] Although he was writing in the context of the end of the Cold War, Lind’s observation remains apposite and is at the core of the conceptual leap being undertaken by Australia, the US, the UK and the other F-35 partners. These are increasingly clear strategic choices that will have implications for all air forces, and they will soon discover whether the price will have been worth paying.

N.B. This article is derived from the author’s work as published in The RUSI Journal. See: André Adamson and Matthew Snyder, ‘The Challenges of Fifth-Generation Transformation,’ The RUSI Journal, 164:4 (2017), pp. 60-6.

Wing Commander André Adamson is an officer in the RAF and was until recently liaison officer for the Plans Bureau with the French Air Staff in Paris. Colonel Matthew Snyder is an officer in the USAF and strategic partnership exchange officer for the Plans Bureau with the French Air Staff in Paris. The views and opinions expressed in this article are those of the authors and do not represent the official position of their respective organisations.

Header Image: An F-35 Lightning II departs RAAF Base Amberley for the Avalon Air Show, c. 2017. (Source: Australian Department of Defence)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

[1]  The RAF has decided to refer to a ‘next generation’ air force in its recently published strategy to emphasise the concept of integration and to reduce the risk of the strategy being seen to be platform based. See RAF, Royal Air Force Strategy: Delivering a World-Class Air Force, (London: Royal Air Force, 2017).

[2] PWC, ‘Italian F-35 Lightning II Program: Economic Impact Assessment,’ February 2014.

[3] By way of comparison, the estimated cost of the US Navy’s first four new Gerald R Ford-class nuclear-powered aircraft carriers will cost approximately $50 billion and the costs for modernising all three components of US nuclear forces will cost approximately $350 billion over the next decade. See, Congressional Budget Office, ‘Projected Costs of U.S. Nuclear Forces, 2017 to 2026,’ February 2017.

[4] Justin Bronk, ‘Maximum Value from the F-35: Harnessing Transformational Fifth-Generation Capabilities for the UK Military,’ RUSI Whitehall Reports, 1-16 (February 2016), p. viii.

[5] Ibid.

[6] Franck Delétraz, ‘Le cri d’alerte du général Lanata,’ Présent, 8 August 2017.

[7] William S. Lind, Colonel Keith Nightengale (USA), Captain John F. Schmitt (USMC), Colonel Joseph W. Sutton (USA), and Lieutenant Colonel Gary I. Wilson (USMCR), ‘The Changing Face of War: Into the Fourth Generation,’ Marine Corps Gazette, (October 1989), p. 22.

#BookReview – Limiting Risk in America’s Wars: Airpower, Asymmetrics, and a New Strategic Paradigm

#BookReview – Limiting Risk in America’s Wars: Airpower, Asymmetrics, and a New Strategic Paradigm

By Wing Commander Alec Tattersall

Phillip S. Meilinger, Limiting Risk in America’s Wars: Airpower, Asymmetrics, and a New Strategic Paradigm. Annapolis: MD, Naval Institute Press, 2017. Illustrations, Notes, Bibliography, Hbk. xx + 277 pp.


The US possesses the pre-eminent military force in the world today. The record of the US in conflict since the Second World War does not, however, reflect this capability pre-eminence. In a recent online article, Harlan Ullman noted that:

President John F. Kennedy tartly observed that there is no school for presidents [but] there needs to be a way to bring knowledge and understanding to bear on presidents’ decisions.[1]

Ullman’s concern is that President’s, and those that advise them, are ill prepared for determining political strategy in the context of using military force.

It would not be inappropriate to suggest that Phillip S. Meilinger’s new book is one way of addressing this knowledge deficit. In simple terms, this is a book about US strategy, or rather re-thinking US strategy in the context of protecting national interests subject to the usual pressures of representative democracy. Pressures that require amongst other things maintenance of public support, which is increasingly sensitive to the costs of war in both people and money. As such Meilinger advocates for a reorientation of US military policy to focus on its asymmetric strengths in areas such as air and naval power, special forces (SOF), increasingly pervasive intelligence, surveillance and reconnaissance (ISR) and intelligence analysis, against enemy vulnerabilities, and at the same time limit the States exposure to the risk of ‘casualties and cost’. While a simple concept, it is a shift away from current US strategic policy that follows Clausewitzian notions of using conventional ground forces against enemy strengths.

Meilinger starts by reminding us of the main problem to be addressed – designing military strategy to achieve political goals with the highest chance of decisive military victory but at the least cost. Railing against the Clausewitzian model of seeking decisive victory by attacking an enemy’s strength head-on, and its attendant higher cost and risk of failure, Meilinger reviews the work of several renowned strategists including Basil Liddell Hart, J.F.C. Fuller, Antoine Jomini and Sun Tzu to identify an alternative strategic direction. The common thread he draws from such strategists is of using an asymmetric advantage to strike at an enemy’s weakness while protecting your own. He draws upon the example of indirect second-front operations that he defines as:

[g]rand strategic flanking manoeuvres involving a major military force that strikes the enemy unexpectedly somewhere other than the main theatre of action (the source of the enemy’s strength) and is directed to achieving clear political objectives. (p.31)

Within the concept of second-fronts, Meilinger sees a basis to provide the US with an asymmetric advantage over enemies, with the promise of limiting the America’s exposure to casualties and cost.

Meilinger then examines both successful and unsuccessful historical incidences of second-fronts from the Peloponnesian war through to the Second World War to determine whether they are conceptually relevant today. This examination identifies that the reasons for opening a second-front exist today. These reasons are to avoid enemy strongpoints, increased morale, gaining an economic advantage, splitting an alliance, denying or gaining access to resources, the base for further operations, taking advantage of a unique strength. Importantly, the contemporary need for states to limit risk and preserve resources makes the most fundamental reason for adopting second-fronts. Also, the use and creation of asymmetry against an enemy by avoiding their strengths and attacking their vulnerabilities to limit risk and cost are of significant relevance to the American public. Similarly, those factors prominent in success or failure of second-fronts such as valid strategy, competent planning, competent leadership, accurate and timely intelligence, friendly or neutralised local population, secure lines of communication, maritime and air superiority, are also still current.

F-35A Lightning II joint strike fighters land at RAF Lakenheath, 15 April 2017. The arrival of these aircraft marked the first F-35A fighter training deployment to the US European Command area of responsibility or any overseas location. The aircraft is assigned to the 34th Fighter Squadron at Hill Air Force Base, Utah. (Source: US Department of Defense Images)

While many of these factors are commonly addressed, Meilinger raises a couple of issues that are perhaps core to the application of an appropriate alternative strategy to the achievement of desired political objectives. Success requires both sound policy and strategy, the setting of which requires the military leadership to provide appropriate advice and guidance to the government. Political objectives must be achievable through an aligned strategy that military planners design to maximise the chance of success while simultaneously minimising risk and costs. As such strategy and the forces to implement it should not be adversely affected by service culture or other factors incongruent with the development of optimal outcomes. Should the government not accept appropriate advice, but instead adopts policy or strategy that inappropriately increases the risk to lives and/or of failure then the military leadership should have the moral courage to seek to positively influence political decision-making or be prepared to resign.

Meilinger highlights the asymmetric advantage provided to the US by its air power capabilities that most, if not all, nations would struggle to contain. Through its reach, speed, ubiquity, flexibility and lethal precision it provides the US direct access to all the strengths and vulnerabilities (centres of gravity) of an enemy, allowing it the ability to undertake direct or indirect attack against them, with drastically reduced risk to its forces and civilians, and a significantly reduced footprint. Concerns over its reputation (psychological, graphic violence, and morality of distance) and risk shifting to civilians, arguably are offset using precision weapons, targeting tools and detailed planning resulting in reduced risk to civilians. In other words, Meilinger claims it is ‘the US asymmetric advantage that limits [US] risk.’ (p. 190)

Since the Second World War, wars have generally been fought with limited means to achieve limited objectives, whether due to avoiding nuclear peers, concerns with maintaining public support, legal restrictions, media, geography, culture or concerns over managing scarce resources. Meilinger’s review of post-Second World War wars undertaken by the US from Korea to Iraq highlights a somewhat chequered record of success premised on US strategy of employing massive conventional ground forces. While air power was used during these wars, it was either used poorly, or when used successfully, the maintenance of an overall Clausewitzian conventional ground force strategy ultimately led to strategic failure.

Meilinger notes that perhaps another model should have been used; one presaged by historical second-front operations that used unique strategies and tactics to solve equally unique problems, with the goal of achieving measurable political results at minimal risk. As such Meilinger suggests that the US should ‘use [its] asymmetric strengths against enemy weaknesses while screening their own vulnerabilities’. In addition to air power, existing asymmetric strengths include SOF and ubiquitous ISR. Combining these three capabilities with ‘determined’ indigenous forces provide a force structure that provides an asymmetric advantage against conventional and unconventional enemy forces, and which when compared to conventional ground force options offers an opportunity for measurable results while saving lives and money.

There is, however, a paradox in Limiting Risk in America’s Wars that is hard to reconcile. The engaging, forthright simplicity of the book is achieved by avoiding overly complex analysis and justification of strategic concepts and their technical detail. Consequently, what makes the book easy to read and understand, also makes it appear shallow in specific areas. While the knowledge of the author is unquestionable, and the notes provide an extra depth of information, there are times when the reader is left to accept the statements of the author as fact, rather than follow an articulated analysis resulting in verifiable deductions or inductions.

US Army 1st Sergeant Henning Jensen of Headquarters Company, 1st Battalion, 1st Security Force Assistance Brigade, leads a foot patrol with the National Police Transition Team in eastern Baghdad in 2008 while assigned to a military transition team. Transition teams have been replaced by the 1st SFAB to help combatant commanders accomplish theatre security objectives by training, advising, assisting, accompanying and enabling allied and partnered indigenous security forces. (Source: US Department of Defense Images)

For instance, a critical position taken by the author is that the US should adopt the asymmetric advantage provided by the ‘combination of air power, SOF, indigenous forces, and ISR.’ (p. 194) There is a succinct analysis of the air power capability resulting in a deduction that air power provides an asymmetric advantage, but there is no such deductive analysis of the asymmetric advantage of SOF and ISR and only a limited prescription for indigenous troops. While there seems to be a dearth of material on the anti-Clausewitzian aspects of these elements, examples exist. The work of retired General Robert Scales, for instance, on mobile land forces in replication of air power capability would seem to offer the prospect of more detailed analysis of corresponding ground force elements, to aid in fleshing out the elements of Meilinger’s overall strategy. The lack of detailed insight into each of the non-air power elements, by consequence results in the absence of explanation or analysis into how the four nominated forces fit together to deliver an overall asymmetric advantage in contemporary conflict. Admittedly, a core thread of the book is about raising the importance of air power in the overall force composition and strategy mix, but the failure to address the other elements and their combination can lead to questions, which undermines the overall premise of the book and could have been quickly addressed.

One such example is the a priori claim that the use of conventional forces increases the risk of casualties (civilians and own forces) – whether from the dangers of ground combat or the application of air power in support of troops in conflict. If you replace conventional forces with indigenous troops, the same risks still seem to exist. In fact, the risk may increase if the indigenous troops are not as professional or well-equipped as the conventional forces they are replacing. The logical conclusion that can be drawn thus appears to be that the only benefit that exists is a movement of risk from US forces (as no conventional troops are committed) to the indigenous forces and civilians.

Meilinger tellingly notes that if:

US leaders determine that our vital interests be indeed at stake and US involvement is essential the case studies reveal timeless truths regarding the most effective and efficient methods of achieving success at low risk. (p. 205)

Conceptually, after reading this book, it is hard to disagree with this statement. There is something powerful in the simple argument that strategy, and force composition, should be built around the use of asymmetrical advantages against enemy vulnerabilities to reduce risk and cost. However, by attempting to advance this concept one step further and identify, without full supporting analysis, a specific contemporary US strategy with a focus on air power and the other elements of SOF, ISR and indigenous ground forces, it strikes me that Meilinger not only comes to a logically weakened position. As such, Meilinger, unfortunately, misses the opportunity to articulate a more robust and appropriate strategy for the conduct of warfare generally.

Wing Commander Alec Tattersall has been a permanent member of the Royal Australian Air Force (RAAF) since 1996. He is a graduate of the University of Tasmania (Bcom & LLB), the University of Melbourne (Grad. Dip. Military Law), the Australian National University (GDLP and LLM), and is currently undertaking postgraduate research into the philosophical aspects of autonomous weapon systems at the University of New South Wales. His recent postings include; Headquarters Joint Operations Command, Air Force Headquarters, the Directorate of Operations and Security Law, and the Air Power Development Centre. Threaded through these postings are a number of operational deployments to the Middle East and domestically for counter-terrorism.  He is the currently seconded to Special Counsel in the Australian Signals Directorate and is the Defence Legal representative to the 2017/18 meetings of the United Nations Group of Governmental Experts on Lethal Autonomous Weapon Systems. The opinions expressed are his alone and do not reflect those of the RAAF, the Australian Defence Force, or the Australian Government.

Header Image: An MQ-9 Reaper equipped with an extended range modification sits on the ramp on Kandahar Airfield, Afghanistan before a sortie on 6 December 2015. (Source: US Department of Defense Images)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

[1] Harlan Ullam, ‘Why America Loses Every War,’ Defense One, 17 November 2017.

NORAD at 60

NORAD at 60

By Dr Brian Laslie

NORAD tracks Santa (Source: Author)

Editorial Note: This weekend, 12 May, the North American Aerospace Defense Command (NORAD), the Bi-National defense command between the United States and Canada (and yes, the same organization that tracks Santa every Christmas Eve) is celebrating its 60th Anniversary. As such, we here at From Balloons to Drones wanted to share a portion of the history of this unique organization. The following comes to you from the NORAD History Office and our Assistant Editor Dr Brian Laslie, who is also a historian at NORAD.

With the beginning of the Cold War, American defence experts and political leaders began planning and implementing a defensive air shield, which they believed was necessary to defend against a possible attack by long-range, manned Soviet bombers. By the time of its creation in 1947, as a separate service, it was widely acknowledged the Air Force would be the centre point of this defensive effort. Under the auspices of the Air Defense Command (ADC), first created in 1948, and reconstituted in 1951 at Ent Air Force Base (AFB), Colorado, subordinate US Air Force (USAF) commands were given responsibility to protect the various regions of the United States. By 1954, as concerns about Soviet capabilities became graver, a multi-service unified command was created, involving US Navy, US Army, and USAF units – the Continental Air Defense Command (CONAD). USAF leaders, most notably Generals Benjamin Chidlaw and Earle Partridge, guided the planning and programs during the mid-1950s. The USAF provided the interceptor aircraft and planned the upgrades needed over the years. The USAF also developed and operated the extensive early warning radar sites and systems which acted as ‘tripwire’ against air attack. The advance warning systems and communication requirements to provide the alert time needed, as well as command and control of forces, became primarily a USAF contribution, a trend which continued as the nation’s aerospace defence matured.

Four US Air Force Convair F-106A Delta Dart fighters from the 5th Fighter Interceptor Squadron, Minot AFB, fly over Mount Rushmore, on 27 July 1981. (Source: Wikimedia)

As USAF leaders developed plans and proposed warning system programs, they became convinced of the logical need for extended cooperation with America’s continental neighbour, Canada. US-Canada defence relationships extended back to the Second World War when the two nation’s leaders formally agreed on military cooperation as early as 1940 with the Ogdensburg Declaration. These ties were renewed in the late 1940s with further sharing of defence plans in light of increasing Soviet military capabilities and a growing trend of unstable international events, such as the emergence of a divided Europe and the Korean War.

Defence agreements between Canada and the United States in the early 1950s centred on the building of radar networks across the territory of Canada – the Mid- Canada Line (also known as the McGill Fence), the Pinetree Line, and the famous Dew Line. This cooperation led to a natural extension of talks regarding the possible integration and execution of air defence plans. The Royal Canadian Air Force (RCAF) and USAF exchanged liaison officers and met at critical conferences to discuss the potential of a shared air defence organisation. By 1957, the details had been worked out, and the top defence officials in each nation approved the formation of the NORAD, which was stood up on 12 September at Ent AFB, in Colorado Springs, Colorado, home of the US CONAD and its subordinates, including USAF ADC. General Earl Partridge, USAF, who was both the ADC and CONAD Commander, also became commander of NORAD, and the senior Canadian RCAF official, Air Marshal Roy Slemon, who had been the critical Canadian delegate in most of the cooperation talks, became deputy commander, NORAD. Nine months after the operational establishment of the command, on 12 May 1958, the two nations announced they had formalised the cooperative air defence arrangements as a government-to-government bilateral defence agreement that became known as the NORAD Agreement. The NORAD Agreement and its associated terms of reference provided the political connections which would make possible the longevity of the Canadian-US aerospace defence relationship into the future years. The NORAD Agreement, with its requirement for periodic review, ensured flexibility to adapt to a changing defence environment as would be evident by the events that would soon face the fledgeling command.

NORAD Map 1960s

Within one year of its establishment, NORAD began the process of adapting its missions and functions to ‘a new and more dangerous threat.’ During the 1960s and 1970s, the USSR focused on creating intercontinental and sea-launched ballistic missiles and developed an anti-satellite capability. The northern radar-warning networks could, as one observer expressed it, ‘not only [be] outflanked but literally jumped over.’ In response, the USAF built a space-surveillance and missile-warning system to provide worldwide space detection and tracking and to classify activity and objects in space. When these systems became operational during the early 1960s, they came under the control of the NORAD.

In NORAD’s 60-year history, perhaps the most notable symbol of the command has been the Cheyenne Mountain Operations Center (CMOC), often referred to as simply ‘Cheyenne Mountain.’ This vast bunker complex, which became fully operational in 1966, sat more than 1,500 feet underground and consisted of 15 buildings, which comprised the central collection and coordination facility for NORAD’s global-sensor systems.

Entrance to Cheyenne Mountain Operations Center complex. (Source: Author)

Throughout the 1970s, the ballistic missile threat caused policymakers to reassess the effectiveness of the air defence system. This meant the potential demise of the arguments for enhanced traditional air defence and moved NORAD to focus on such challenges as an improved warning of missile and space attack, defence against the ICBM, and more significant protection and survival of command, control and communication networks and centres. This resulted in a reduction of the USAF interceptor forces and closure of various portions of the radar network. Modernization of air defence forces became a hard argument. Because of changes in US strategic policy, which had come to accept the concept of mutual vulnerability to ICBM attack, the need to spend about $1 billion a year on air defence was challenged. In 1974, Secretary of Defense James Schlesinger stated the primary mission of air defence was to ensure the sovereignty of airspace during peacetime. There followed further reductions in the size and capability of the air defence system. By the late 1970s, the remaining components – some 300 interceptors, 100 radars and eight control centres – had become obsolescent and uneconomical to operate.

Over the years, the evolving threat caused NORAD to expand its mission to include tactical warning and assessment of possible air, missile, or space attacks on North America. The 1975 NORAD Agreement acknowledged these extensions of the command’s mission. Consequently, the 1981 NORAD Agreement changed the command’s name from the North American ‘Air’ Defense Command to the North American ‘Aerospace’ Defense Command.

NORAD Commanders have even turned up in the funny pages! Here the NORAD commander, who bore a striking resemblance to actual NORAD commander General Laurence Kuter, briefs Steve Canyon (Source: Author)

The 1980s brought essential improvements for the aerospace defence mission. Again, NORAD demonstrated adaptability to meet these changes. In 1979, the US Congress ordered the USAF to create an air defense master plan (ADMP). The ADMP, modified and upgraded, became the US administration’s outline for air defence modernisation and the foundation for NORAD cost-sharing discussions between Canada and the United States. The modernization accords signed in 1985 called for the replacement of the DEW Line radar system with an improved arctic radar line called the North Warning System (NWS); the deployment of Over-the-Horizon Backscatter radar; greater use of USAF Airborne Warning and Control System (AWACS) aircraft; and the assignment of newer USAF aircraft, specifically F-15s, F-16s, and CF-18s, to NORAD.

The late 1980s witnessed another expansion of the NORAD mission. On 29 September 1988, President Ronald Reagan signed legislation that involved the US Department of Defense, and specifically NORAD, in the campaign against drug trafficking. The command’s role in this mission was to detect and track aircraft transporting drugs and then report them to law enforcement.

On 11 September 2001, terrorists hijacked four passenger airliners, two of which obliterated the World Trade Center, in New York City, while another shattered part of the Pentagon. One of the four aircraft crashed in Pennsylvania before hitting its target, apparently either the US Capitol or the White House. The event made it clear that attacks on the homeland would not necessarily come only from across the poles and oceans which buffered the North American continent.

In the immediate aftermath of the 9/11 attacks, NORAD began Operation NOBLE EAGLE. The purpose of this still-ongoing air patrol mission was to defend the United States against terrorist aggression originating from either within or outside the nation’s air borders. NOBLE EAGLE missions were executed primarily by the USAF First Air Force, a NORAD unit under the command of the Continental NORAD Region (CONR), located at Tyndall AFB, in Florida. By June 2006, NORAD had responded to more than 2,100 potential airborne threats in the continental United States, Canada, and Alaska, as well as flying more than 42,000 sorties with the support of USAF AWACS and air-to-air refuelling aircraft.

NOBLE EAGLE’s response has become institutionalised into daily plans and NORAD exercises through which the command ensures its capability to respond rapidly to airborne threats. USAF units of NORAD have also assumed the mission of the integrated air defence of the National Capital Region, providing ongoing protection for Washington, D.C. Also, as required, NORAD forces have played a critical role in air defence support for National Special Security Events, such as air protection for the NASA shuttle launches, G8 summit meetings, and even Superbowl football events.

In recognition of the changing threat environment of the post-9/11 world, the United States Department of Defense stood up, in October 2002, US Northern Command (USNORTHCOM) as a joint service command to execute the mission of homeland defense across all domains. With NORAD already executing the air defense mission of North America, it was a logical step to co-locate the headquarters of NORAD and USNORTHCOM in Colorado Springs, Colorado, and to retain a dual-hatted commander relationship between NORAD and the new US joint command.

As NORAD looked to the future, past threats re-emerged. In 2014, Russian long-range aviation and maritime activity reached levels not seen since the Cold War: more sorties, supported by more tankers, and more sophisticated linkages between air and maritime intelligence collection than ever before. This activity underscored an aggressive Russian military enjoying new prosperity, proficiency, and ever improving capabilities that had NORAD focused on the Russian Bear once more. NORAD’s three operational regions in Alaska, Canada, and the Continental United States, routinely responded to incursions by Russian long-range aviation aircraft entering the North American Air Defense Identification Zone (ADIZ) or the Canadian Air Defense Identification Zone (CADIZ).


As NORAD celebrates its 60th this weekend, we here at From Balloons to Drones send a very ‘Happy Anniversary’ to both America and Canada and to the Command itself for providing 60 plus years of aerospace warning, control, and defense to the Homeland. We know that you have the watch!

Dr Brian Laslie is a US Air Force Historian and currently the Deputy Command Historian at North American Aerospace Defense Command (NORAD) and United States Northern Command (USNORTHCOM). A 2001 graduate of The Citadel and a historian of air power studies, he received his Masters’ from Auburn University Montgomery in 2006 and his PhD from Kansas State University in 2013. He is the author of Architect of Air Power: General Laurence S. Kuter and the Birth of the US Air Force (2017) and The Air Force Way of War (2015). The latter book was selected for the Chief of Staff of the Air Force’s 2016 professional reading list and the 2017 RAF Chief of the Air Staff’s reading list. He can be found on Twitter at @BrianLaslie.

Header Image: A USAF F-22 Raptor of the 3rd Wing escorts a Russian Air Force Tu-95 Bear bomber near Nunivak Island, c. 2007. This was the first intercept of a Bear bomber for an F-22, which was alerted out of Joint Base Elmendorf-Richardson’s Combat Alert Center. (Source: US Department of Defense Images)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

#BookReview – Space Warfare in the 21st Century: Arming the Heavens

#BookReview – Space Warfare in the 21st Century: Arming the Heavens

By Squadron Leader Michael Spencer

Joan Johnson-Freese, Space Warfare in the 21st Century: Arming the Heavens. Abingdon: Routledge, 2017. Notes. Index. xx + 202 pp.


In this book, Joan Johnson-Freese, Professor of National Security Affairs at the US Naval War College, has written a comprehensive history of the development of US national policy for space security. In the preface, Johnson-Freese cited General John Hyten, the then Commander, US Air Force Space Command, as stating that, ‘if the United States is “threatened in space, we have the right of self-defence, and will make sure we execute that right.”’ (p. ix) The underlying driver that persists in twenty-first century US policy developments on space security, up to the publication of this book in 2017, is to be able to access and securely use space for its purposes independently and at the time of its choosing. The US also seeks to keep pace with the increasing number of space-faring nations and developments in space power projection.

The book’s title invokes visions of nations in the twenty-first-century posturing to exploit niche combat capabilities to project their influence into future confrontations into the common grounds located above the Earth that is the shared orbital domain. However, this book is a well-constructed guide that walks the reader through the process of US national policy development for space security. More specifically, the book logically describes to the reader the policy determinants for US national security and space security. It also considers the drivers adopted by the US government that has steered its space security interests and shaped attitudes and organisational responses to assert those interests in the shared space orbital domain in the early period of the twenty-first century. The book concludes with suggesting that US space security policy take the lead in providing a secure space domain.

Space is one of the domains used as a common ground to globally connect actors in activities that either permeates across the globe or are discrete interconnected nodes remote located around the world. Moreover, individual state actors wish to exploit that common ground to build compartments within it for their exclusive purposes. State actors will then seek to build systems to protect these compartments that inadvertently increase the congested, contested, and competitive character of the space domain. This also has implications for dependent capabilities, for example, the use of the electromagnetic spectrum for assured access to space systems that support state interests. The challenge for US policy development is to adopt mechanisms that can discriminate between a hostile act and an accidental on-orbit event and provide options for appropriate responses that will not further exacerbate the problems of congestion and inadvertently escalate the competition into an uncontrolled contest.

Chapter one provides a rolling history of the US government’s inaugural efforts in developing policy statements that injected space interests into national security policy. These were then elaborated further in the first dedicated national space policy and space security strategy. US policy-makers, along with many space-savvy actors, have accepted that in a globalised world, economic and national security have become critically dependent on space. However, space is increasingly complex, not regulated, and serves as a global common, which is a challenge for the security policy of individual nations.

Chapter two characterises the priority problems posed by the utility of the orbital space domain to security policy-makers. The characteristics of space activities in the global common fundamentally challenges the management of national security by individual nations. Space cannot be a physical extension to sovereign airspace. Additionally, space is increasingly more affordable and accessible to more state and non-state actors, and increasingly more critical to designs for public infrastructure and daily lifestyles. Although it is accepted that space is a globally shared common, it has become increasingly congested, contested, and competitive in the absence of robust regulation. The space domain is difficult to control, and this is a driver for significant space-faring nations to consider structuring military force options to help assure space access from adverse environmental effects, on-orbit accidents, potential future adversary actions.

Chapter three discusses the reasons why the US should make strategies for space security. The fundamental assumption made is that conflict in the common grounds is inevitable and that concern over the future capabilities of potential adversary nations in the space domain is an acceptable driver for the development of US space security strategy irrespective of the publicly announced intentions of other nations. Johnson-Freese postulates potential strategy developments in the US along the four separate themes. First, space dominance is essential to assuring US military/civilian capabilities. Second, the weaponisation of space is inevitable. Third, while space is essential to military capabilities, the government should seek to limit the militarisation of space, and finally, the US should promote the use of space as a sanctuary, in a similar analogy to the international cooperation for managing Antarctica. Irrespective of the strategic theme, all discussions conclude that space is the Achilles heel for military power.

The Defense Advanced Research Projects Agency’s Airborne Launch Assist Space Access program is developing a much-less expensive way to routinely launch small satellites, with a goal of at least a threefold reduction in costs compared to current military and U.S. commercial launch costs. (Source: US Department of Defense)

In chapter four, Johnson-Freese discusses options for military roles that can be performed in and with space to assure space security with a focus on the separate roles and potential technologies for the military to deter, defend, and defeat an adversary in space. The challenge for military commanders is that space is not a logical extension of the air domain. This requires strategists and capability developers to recognise the need to understand the differences in science, technology, and costs. The conduct of warfare in the orbital space domain will be challenged by the definition and ethics of military endstates involving any on-orbit military actions. This is especially true of those legacy effects, such as orbital space debris and disruption to critical public infrastructure, which may endure, potentially, for many generations after a conflict has ended.

Whereas chapters one to four steps the reader through a logical process of understanding the outcomes for a space security strategy and deriving the necessary outputs, chapter five discusses the critical national stakeholders who are essential in putting space strategy into effect, and the support necessary to make it useful. The observation made is that the issue of space security has generated an industry for the pondering, pursuit, and procurement of new space applications by military, industry, aerospace think tanks, academia, and support research organisations. Thus, it is good to define a threat that can be used to justify the significant and long-term investments into space security.

Chapter six is a discussion on the impact of the newest space actors and their behaviours and attitudes towards space. Space access is no longer considered to be exclusive to government-run organisations in space-faring nations. Technology miniaturisation and reduced launch costs have democratised space access to allow non-state actors. Moreover, entrepreneurial investors have triggered a need for strategists to reconsider space as ‘New Space’ to be shared with new additional actors and an increased level of unexpected and complexity in space behaviours. Johnson-Freese refines the book’s premise to consider that access to is space is inevitable but that space warfare is not necessarily inevitable.

Chapter seven concludes the Johnson-Freese’s discussion on strategy development for US space security by highlighting the challenges of democratisation of space access and the globalisation of interdependent space users, both military and non-military. While it is difficult to define a policy for space warfare when a definition for ‘space weapon’ has not yet been universally agreed, space security is complex and might be better achieved under a multi-lateral cooperative arrangement between space-faring nations. While space warfare might serve to achieve a short-term goal, it may be better to appreciate that the more prolonged effects of destabilising the space domain will be detrimental to all space users. A continuously growing number of space users want evermore space-derived services driven by ever-evolving technological improvements that allow more space missions to be conducted near each other. However, this uncontrolled approach by separate nations to individually access the common grounds of the Earth space orbital domain must logically converge at a point where the risks of accidents or deliberate action on orbit must be considered as a likely determinant for future space security policy, and not necessarily a space warfare policy.

In conclusion, this book is well-referenced, and presented in a logical flow of clearly articulated thoughts, making it a useful study reference for strategic thinkers. Johnson-Freese, herself a noted specialist on the space domain, has consulted with subject matter experts from appropriate military and space industry organisations and think-tanks, and is supported by critical individuals typified by the international recognised experts such as Dr David Finkleman, who has served on numerous technical and scientific advisory and study boards for industry and the federal government and is a Fellow of the American Institute of Aeronautics and Astronautics.

Squadron Leader Michael Spencer is currently a serving officer in the Royal Australian Air Force (RAAF). He serves at the Air Power Development Centre in Canberra where he is involved in the analysis of potential risks and opportunities posed by technology change drivers and disruptions to future air and space power. His RAAF career has provided operational experiences in long-range maritime patrol, aircrew training, and weaponeering, and management experiences in international relations, project management in air and space systems acquisitions, space concepts development, and joint force capability integration. He is also an Associate Fellow of the American Institute of Aeronautics & Astronautics. The opinions expressed are his alone and do not reflect those of the RAAF, the Australian Defence Force, or the Australian Government.

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

Header Image: An Atlas V rocket carrying a Space Based Infrared System Geosynchronous Earth Orbit satellite for a US Air Force mission lifts off from Cape Canaveral Air Force Station, Florida, 19 January 2018. (Source: US Department of Defense)