#BookReview – Sovereignty and Command in Canada-US Continental Air Defence, 1940-1957

#BookReview – Sovereignty and Command in Canada-US Continental Air Defence, 1940-1957

By Dr Brian Laslie

Richard Goette, Sovereignty and Command in Canada-US Continental Air Defence, 1940-1957. Vancouver, BC: University of British Columbia Press, 2018. Illustrations. Appendices. Notes. Bibliography. Hbk. xvii + 295 pp.

Soverignty

In case you missed it, the North American Aerospace Defense Command (NORAD) turned 60 this year. It was an easy thing to overlook. Most of the time when I mention that I work at NORAD, the first thing that comes to most people’s mind is that it is the organisation responsible for tracking Santa (and that is a job taken very seriously). However, the day to day focus on the command remains on the defence of the North American continent. It does so through three mission areas: aerospace warning, aerospace control and maritime warning. The most important concept to remember when discussing the history and operations of NORAD is that it is a binational command with shared responsibility between the United States and Canada.

Sixty years of shared defence

For more than sixty years now, Americans and Canadians have bi-nationally agreed to place the defence of the homeland in each other’s hands and entrust officers from both countries with commanding, directing, and controlling forces. To that end, Richard Goette’s new work Sovereignty and Command in Canada-US Continental Air Defence, 1940-1957, looks at the development of these relationships leading up to the creation of NORAD in September of 1957. Goette is an air power academic and Canadian air force historian as well as an Associate Professor in the Department of Defense Studies at the Canadian Forces College in Toronto, where he is Deputy Chair of the Department of Military Planning and Operations.

Looking back retrospectively, it is easy to believe that a close relationship between the two nations was a foregone conclusion; it seems difficult to imagine a world in which Canada and the US would not cooperate on matters of national defence. This was indeed not the case immediately following the First World War. One of the demonstrative statements in the book comes at the beginning of Chapter Three where Goette states that ‘[I]t was by no means preordained that Canada and the US would cooperate in the defense of North America.’ Both countries had active war plans for conflict with each other. As Goette shows, ‘[C]anadian military officials continued to consider the US a potential adversary and planned accordingly.’ Likewise, America’s war plan crimson dealt with a conflict against Canada as part of a likely larger fight against Great Britain (War Plan Red) (p. 71).

Slemon
Air Marshal Charles Roy Slemon, Chief of the Air Staff , RCAF, 1953-1957, and the first Deputy Commander-in-Chief of NORAD.(Source: Candian Department of Defence)

Throughout the 1940s and 1950s, this planning against the border nations morphed into cooperation between the two nations and eventually into a unique agreement where the defence of the two nations was shared. Goette (p. 23) aims to demonstrate ‘how Canadian and American officers debated and negotiated doctrinal definitions of command and control as the basis of the Canada-US continental air defence relationship from 1940-1957.’ Thus, Goette’s work pairs nicely with Joseph T. Jockel’s Canada in NORAD 1957-2007: A History. The author’s thesis (p. 5) is that the struggle from the Canadian perspective ‘was not control but command: command over Canadian air defense forces was the actual “acid test of Canadian sovereignty.”’

Sovereignty

Goette’s work is about sovereignty, particularly the sovereignty of Canada. ‘Sovereignty is a complex and contested concept without a universally accepted definition.’ (p. 27) Both countries had to find common ground and move from common conceptions of defence (working within services) towards bilateral (and later binational) defence. Nineteen-forty saw the earliest discussions held between the two nations with the US seeking both ‘strategic direction’ and ‘command,’ over Canadian forces, a clear problem for Canadian sovereignty and command of their forces. The calculus changed by the summer of 1941 and the new cooperative plan (ABC-22) saw that ‘each nation would retain strategic direction and command of its forces, which effectively recognized national sovereignty.’ More importantly, the groundwork was accomplished allowing the two nations to begin effectively working together with the goal of continental defence in mind (p. 81, 83).

The Second World War found the two nations working effectively together, and establishing relationships and procedures used during the war bore fruit in its aftermath. The post-war Basic Security Plan (BSP) was a combined effort aimed at continental defence that Goette (p. 116) shows ‘was a watershed in the Canada-US defence relationship.’ Between the acceptance of the BSP in 1946 and 1953, other plans and agreements between the two nations, particularly as they concerned cross-border intercepts strengthened the relationship between the two governments, but more importantly between the militaries. As the Cold War progressed, it became increasingly evident that the solution would be in a combined headquarters where US and Canadian personnel could work alongside each other. The problem, especially from the Canadian perspective, remained the spectre of American officers commanding Canadian forces. Interestingly, the ‘solution was avoiding the term “command” and using the principle of operational control.’ Thus, in 1957 the North American Air Defense Command (NORAD) began operations. Headed by an American four-star with a Canadian three-star deputy, each officer held ‘operational control.’ Day-to-day operations and ‘operational control’ were held by the American Commander-in-Chief NORAD, but in his absence, the Canadian Lieutenant General held control over the American officers. Administrative matters, punishment, and other matters of command remained sovereign, i.e. national and service responsibilities. This unique command structure remains in place today (p. 177).

e010858630-v8
The SAGE ‘Blue Room’ at the NORAD Underground Complex at Canadian Forces Base North Bay, Ontario, c. 1972. (Source: Library and Archives Canada)

There is really nothing to critique here, Goette has successfully produced a deeply researched work that is the first significant study of the development of Canadian-US continental defense in the post-Second World War era and, as such, it will remain the go-to book for those looking to understand the origins of this unique relationship for the foreseeable future. Sovereignty and Command will quickly find a following in the fields of history and air power studies but will also find a wide readership in the fields of political science, civil-military relations, and international relations. If you have an interest in how the homeland is defended this is a must-read and demonstrates the unique Canadian-US relationship that has stood the test of time for more than 60 years and looks to easily double that as the unique, nay special, binational relationship continues to evolve into the future.

Dr Brian Laslie is an Air Force Historian and currently the Deputy Command Historian at North American Aerospace Defense Command (NORAD) and United States Northern Command (USNORTHCOM). He is also an Assistant Editor at From Balloons to Drones. A 2001 graduate of The Citadel and a historian of air power studies, he received his PhD from Kansas State University in 2013. His first book The Air Force Way of War (2015) was selected for the Chief of Staff of the Air Force’s and the Royal Air Force’s Chief of the Air Staff professional reading lists. His recently published Architect of Air Power: General Laurence S. Kuter and the Birth of the US Air Force.  He lives in Colorado Springs. He can be found on Twitter at @BrianLaslie.

Header Image: A Royal Canadian Air Force Avro Canada CF-100 Canuck in flight with a Convair F-102 Delta Dagger, c. 1950s (Source: Royal Canadian Air Force)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

A Discourse on John Boyd: A Brief Summary of the US Air Force’s Most Controversial Pilot and Thinker

A Discourse on John Boyd: A Brief Summary of the US Air Force’s Most Controversial Pilot and Thinker

By Dr Michael Hankins

In March 2018, Air University Press released a new edition of Colonel John Boyd’s A Discourse on Winning and Losing with a new introduction by Grant Hammond. On top of his heavy influence in designing the F-15 and F-16 fighters, Boyd was one of the most influential and often cited officers in the history of the US Air Force (USAF), but unlike most famous strategic thinkers, he published almost nothing. Thus, this new edition promises to be possibly the most widely disseminated and studied edition of Boyd’s intellectual output.

JohnBoyd_Pilot
John Boyd during his service in Korea. (Source: Wikimedia)

Boyd is, however, a controversial figure. Among USAF officers, Boyd is either loved or hated. Hammond’s introduction refers to him as ‘legendary,’ ‘a great original thinker,’ and ‘a paragon of virtue – loved by many […] for his character and integrity.’[1] On the other hand, former fighter pilot and USAF Chief of Staff General Merrill McPeak summarised the opposing view: ‘Boyd is highly overrated […] In many respects he was a failed officer and even a failed human being.’[2] Boyd was the type of person who challenged authority and fought for what he believed. He was also the kind of person that was so profoundly insecure that he stalked food courts to hunt down and physically assault people whom he perceived had not shown him proper respect.[3] However, many younger officers have never even heard of Boyd nor are they familiar with his ideas or character. With the recent release of the new edition of his work, it is worth taking time to briefly summarise Boyd’s significant contributions and provide some context as to why he is both so praised and so controversial.

First, we must deal with the notion of Boyd as – according to Hammond – ‘a premier fighter pilot.’ Some have referred to Boyd as the greatest fighter pilot who ever lived, and many press outlets mistakenly refer to him as an ace. Although Boyd did fly F-86 Sabres during a brief tour in the Korean War, he does not have a single air-to-air kill to his credit. He never fired his gun in a combat situation. This is not necessarily an indictment of his skills. The reason is that in those years, the USAF tended to fly in formations in which only the lead element was cleared to fire, while the wingmen provided protection. Boyd only ever flew in a wingman position, and never got in an opportunity to fire at enemy MiG-15s. Later, Boyd became a flight instructor at the USAF Fighter Weapons School, and he wrote a manual on dogfighting tactics. His reputation as a fighter pilot was built on his time as an instructor, during which he displayed a penchant for defeating incoming students in simulated dogfights (developing his claim that he could always do so within forty seconds). Fans of Boyd laud him for this, although his detractors often wonder why an instructor defeating his students using an oft-repeated manoeuvre is noteworthy, much less a point worth bragging about.

Boyd’s first significant contribution to USAF thinking was ‘Energy Maneuverability Theory’ (EMT) in the early-to-mid 1960s. This was an application of the principles of thermodynamics to aircraft metrics. Up until that point, the most important metrics for evaluating fighter planes tended to be wing loading ratios, top speed, and acceleration. Many fighter pilots tried to argue that agility and manoeuvrability were more important in a dogfight, but although wing loading could provide a rough idea of how well a craft could turn, it fell far short of an accurate description of a plane’s manoeuvrability. Boyd’s EMT instead analysed how well an aircraft could change energy states – involving speed, acceleration, kinetic and potential energy – essentially giving a numerical value to how well a plane could manoeuvre under various conditions. Charting this value on a graph corresponding to speed and altitude will give a curve of the aircraft’s manoeuvring capability. This method gave fighter pilots a way to talk to engineers in their ‘language,’ and describe dogfighting in mathematical terms, which had a significant influence on aircraft design. Beginning in the late 1960s, EMT became a significant factor in designing and evaluating American aircraft.

EMT.jpg
This chart, a typical example of the types of charts Boyd produced, compares the agility of an F-4 Phantom II and a MiG-21, but specifically under conditions of a 5g turn. (Source: USAF Academy Department of Aeronautics)

Although Boyd appears to have come up with these ideas independently, he was not the first to do so. A decade earlier, in 1954, an aerodynamics engineer working for Douglas named Edward Rutowski had the same concept. Rutowski’s work did not apply to dogfighting, but to calculating fuel ranges of various types of aircraft.[4] However, the equations – and the charts – are almost the same as Boyd’s, who later admitted to copying the charts after denying it for years.[5] One element that Boyd did add, however, was overlaying the EMT curve for one aircraft on top of another, to show where one aircraft had an advantage in manoeuvrability. These comparisons, first done in the late 1960s, showed that Soviet aircraft of that time might have a distinct advantage in dogfighting compared to the American fighters of the day (which, in that period, were mostly interceptors, not traditional fighters). Thus, while not necessarily completely original, Boyd did more to popularise the EMT concept and apply it to fighter design and tactics training, which then became part of a push within the USAF to design aircraft that were more specialised for air-to-air combat.

Boyd had a hand in the design of those planes. The first major USAF project to design a dedicated air superiority fighter was the F-X program, which eventually resulted in the F-15 Eagle. Boyd was brought in partway through this project and attempted to influence the design toward being more dedicated for dogfighting. To Boyd, this meant making it as small as possible and gutting it of sophisticated technologies, especially radar. The more massive the radar dome in a fighter’s nose, the larger the entire plane needed to be. Making the radar as small as possible (or, as Boyd advocated, eliminating it), could make the plane smaller and lighter. Boyd managed to have a significant influence on the design of the F-15, but he did not get everything he wanted. The plane was significantly more extensive and more sophisticated than he advocated, so in disgust, he turned to another project.[6]

f-15a_first_prototype_1
McDonnell Douglas F-15A (S/N 71-0280, the first F-15A prototype). Note the square wingtips and unnotched stabilator. (Source: Wikimedia)

Using a combination of subterfuge, connections with high-level decision-makers, stealing unauthorised time on USAF computers, and meeting with aircraft manufacturers in secret using coded language, Boyd pressured the Air Force to procure a smaller lightweight fighter. Boyd wrote the requirements for that plane, which happened to match almost identically the characteristics of a plane he had been secretly designing with General Dynamics’ Chief of Preliminary Design, Harry Hillaker. That plane eventually became the F-16 Fighting Falcon—his ideal true dedicated air-to-air dogfighter. However, Boyd was also disappointed by the modifications made to that aircraft. The USAF made it heavier and more sophisticated than he wanted, and so Boyd denounced it in disgust.[7] Indeed, although his vision for the F-16 was a pure dogfighter, the plane has rarely been used in air superiority missions by the USAF and has achieved zero air-to-air kills for the US.

YF-16_and_YF-17_in_flight
An air-to-air right side view of a YF-16 aircraft and a YF-17 aircraft, side-by-side, armed with AIM-9 Sidewinder missiles, c.1972. (Source: Wikimedia)

After his retirement in 1975, Boyd went back to work in the Pentagon as an analyst, and it was during this time that he completed most of the intellectual output in the recently released new volume. This began with a short essay entitled ‘Destruction and Creation,’ which argued that societies and systems only really change when they are destroyed and recreated, rather than reformed from within. In 1976, Boyd received a NASA grant to study the differences in pilot behaviour between simulators and reality. Instead of focusing on that, Boyd produced a study titled ‘Fast Transients Brief,’ which consisted of carefully picked historical examples with which Boyd argued that victory in war was the result of being quick, unpredictable, and agile, with the goal of producing confusing in the enemy. This brief was essentially the first draft of what became a larger briefing called ‘Patterns of Conflict,’ which Boyd continually expanded to include more historical examples of his point. This briefing continued to grow, including more examples, until it became the final form under the new title ‘A Discourse on Winning and Losing.’ In this form, it was a fourteen-hour briefing split into two days. Boyd refused to shorten his briefings or to distribute summaries or slides to those who did not attend, insisting on being given the full amount of time, or nothing.[8]

Also embedded in these briefings was his evolving idea of the OODA loop, which stands for ‘observe, orient, decide, act.’ This was Boyd’s description of the process by which decisions are made at all levels from the tactical to the strategic. Boyd argued that all combatants in a conflict are going through that cycle, and whoever can complete repetitive OODA cycles more quickly will always be the victor. Fans of this theory tend to argue that this insight is revolutionary and secures Boyd’s place alongside thinkers such as Clausewitz or Sun Tzu. Others claim that this idea is very simplistic and offers very little in the way of insight or practical application. Interpreting and applying Boyd’s theory to subjects ranging from warfare to business has become something of a cottage industry. The OODA loop is still taught at US professional military education institutions. Love him, hate him, or merely indifferent, one cannot deny that Boyd has left a legacy and influence.

One final component of Boyd’s life that one must be aware of is his involvement in ‘The Reform Movement.’ During his time in the USAF, he and his followers who pushed for lightweight, dedicated air-to-air combat planes began referring to themselves as the ‘Fighter Mafia,’ and saw themselves at odds with the US government – to the point of depicting themselves as participating in a guerilla war against a government that they deemed as corrupt and ineffective. After Boyd’s retirement, this group morphed into what became known as ‘The Reform Movement’ and moved away from just fighter planes to becoming politically active on broader defence issues. This effort included a litany of journalists, military officers, and politicians who went as far as to form their congressional caucus, as well as non-governmental organisations with the goal of lobbying for particular policies.

The group wanted all US military hardware to be cheap and ‘simple.’ Simple in this context meant technologically unsophisticated relative to the mid-1970s. They argued for cancelling expensive ‘complex’ weapons such as the F-15 and the M-1 Abrams tank and replacing them with cheaper, ‘simple’ alternatives, such as relying on the older M-60 Patton tank or replacing F-15s and F-16s with swarms of F-5 Tigers. ‘The Reform Movement’ was more political than the ‘Fighter Mafia,’ and although the movement attracted some moderates and left-leaning individuals such as James Fallows (journalist for The Atlantic) and Senator Gary Hart (D-CO), it tended to skew conservative. Over time, it grew more conservative with the addition of politicians such as Nancy Kassebaum (R-KS), Newt Gingrich (R-GA), Dick Cheney (R-WY), and possibly its most prominent and active member (who coined the term ‘the Reformers’): self-proclaimed monarchist and white supremacist William Lind.[9] For this group, Boyd was seen as a messiah, and he was often discussed in religious terminology as a saviour preaching a new gospel.

Although this movement had an influential voice in the early 1980s, it had begun to stagnate by the end of that decade, and the 1991 Gulf War discredited many of their arguments.[10] However, despite that war demonstrating the effectiveness of all the weapons systems that the Reformers (and Boyd) had argued against, Boyd himself took sole credit for the success of that war. Boyd claimed he had been the actual author of the ground attack plan, which was not true, and that it would have been even more successful if his ideas had been implemented further.

Boyd is a complex figure, and his influence on the US military, especially the USAF, is impossible to deny. Although the bulk of his work has been floating around the internet for years, having a new edition of his work in an easily accessible and well-produced print edition is extremely useful and quite welcome.

Bibliographical Note

For more information on Boyd, the best place to start is most likely John Andreas Olsen’s 2016 article, ‘Boyd Revisited: A Great Mind with a Touch of Madness’ in Air Power History while the best examination of Boyd’s intellectual output is Frans Osinga’s Science, Strategy and War: The Strategic Theory of John Boyd (2007). Several authors further explore Boyd in Olsen’s edited work Airpower Reborn: The Strategic Concepts of John Warden and John Boyd (2015). A genuinely scholarly biography on Boyd’s life has yet to be written. Hammond’s brief biography, The Mind of War: John Boyd and American Security (2012) is a useful starting point but leans into praise for Boyd to a level that some readers might be uncomfortable with. Robert Coram’s popular biography Boyd: The Fighter Pilot Who Changed the Art of War (2002) has its uses but is little more than hagiography and should be read with a sceptical eye.

Dr Michael Hankins is Professor of Strategy at the USAF Air Command and Staff College eSchool, and and Assistant Editor at From Balloons to Drones. He is also a former Instructor of Military History at the US Air Force Academy. He earned his PhD from Kansas State University in 2018 with his dissertation, ‘The Cult of the Lightweight Fighter: Culture and Technology in the U.S. Air Force, 1964-1991.’ He completed his master’s thesis at the University of North Texas in 2013, titled “The Phantom Menace: The F-4 in Air-to-Air Combat in the Vietnam War.” He has a web page here and can be found on Twitter at @hankinstien.

Header Image: A USAF F-16 Fighting Falcon Block 40 aircraft after receiving fuel from a KC-135 Stratotanker aircraft during a mission over Iraq on 10 June 2008.  (Source: Wikimedia)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

[1] Grant Hammond, ‘Introduction to “A Discourse on Winning and Losing” in Colonel John Boyd, A Discourse on Winning and Losing, edited and compiled by Grant Hammond (Maxwell AFB, AL: Air University Press, 2018), pp. 1-2.

[2] Carl Prine, ‘Q & A with Merrill ‘Tony’ McPeak,’ San Diego Union Tribune, 23 November 2017.

[3] See, for example, a story of Boyd seeking out a former colleague who had expressed doubt in Boyd’s ideas years before. Boyd put out his cigar on the man’s clothing, then began shoving him and shouting obscenities at him, all in public. Told in more detail in Robert Coram, Boyd: The Fighter Pilot Who Changed the Art of War (New York: Little, Brown, and Company, 2002), pp. 179-80.

[4] Edward S. Rutowski, ‘Energy Approach to the General Aircraft Performance Problem,’ Journal of the Aeronautical Sciences, 21 (1954), pp. 187-95.

[5] USAF Historical Research Agency, K239.0512-1066, John Boyd, Corona Ace Oral History Interview, 22 January 1977.

[6] For details on the development of the F-15, see Jacob Neufeld, The F-15 Eagle: Origins and Development, 1964-1972 (Washington DC: Office of Air Force History, 1974).

[7] On this issue, see: Grant Hammond, The Mind of War: John Boyd and American Security (Washington DC: Smithsonian Books, 2012).

[8] These briefings are most thoroughly explored in Frans Osinga, Science, Strategy and War: The Strategic Theory of John Boyd (New York: Routledge, 2007).

[9] For a brief summary of Lind’s extremism (he was known for keeping a portrait of fascist dictator Benito Mussolini in his office), see Bill Berkowitz, “Cultural Marxism’ Catching On,’ Southern Poverty Law Center, 15 August 15, 2003. Lind’s radical right-wing viewpoints are evident from his voluminous writing as the former Director of the Center for Cultural Conservatism, and his many columns in a variety of conservative websites and magazines. His 2014 novel Victoria not only celebrates a violent militia movement overthrowing the American government but glorifies deportations and executions of non-whites and other minorities he deems undesirable, including Jews, Muslims, the LGBTQ community, and it favorably depicts the use of nuclear weapons against African-American populations.

[10] For a summary of ‘The Reform Movement,’ see: John Correll, ‘The Reformers,’ Air Force Magazine (February 2008), pp. 40-4. To see them discuss their ideas in their own words, see: James Fallows, National Defense (New York: Vintage, 1984) and James Burton, The Pentagon Wars: Reformers Challenge the Old Guard (Annapolis, MD: Naval Institute Press, 1993).

SPACE FORCE: The Militarisation of United States Space Policy from Eisenhower to Trump

SPACE FORCE: The Militarisation of United States Space Policy from Eisenhower to Trump

By Bradley Galka

On 18 June 2018, President Donald J. Trump announced his intention to create a new branch of the United States armed forces. This new branch, the US Space Force, would be charged with controlling the nation’s military activities in space. The fact that the US would be involved in military activities in space in the first place should not be taken for granted. The US’ first military space policy was based on the principle that space ought to remain a ‘sanctuary’ from the sort of martial competition that was taking place on earth’s surface. Despite these peaceful beginnings, nearly every successive president has established a military space policy more aggressive than the last. The proposed establishment of the Space Force as a new branch of the US military represents the apex of this decades-long trend toward increased militarisation of space.[1]

0900168
President Eisenhower visiting the George C. Marshall Space Flight Centre in Huntsville, Alabama, 8 September 1960. (Source: NASA)

The US government’s first space policy was established during the presidency of Dwight Eisenhower. Eisenhower and the military saw the nation’s developing satellite program as a valuable tool in monitoring Soviet military concentrations and looked forward to developing the critical capacity of detecting hostile missile launches from space. The president’s views differed with military leaders in significant ways. While the military advocated the development of anti-satellite (ASAT) missile technology and other generally hostile technologies for use in space, Eisenhower was more interested in the scientific possibilities of the space program. Eisenhower established the National Aeronautics and Space Administration (NASA) on 29 July 1958, as a separate entity from the Department of Defense – one with a purely peaceful civilian mandate. Though he did green-light some early research into ASAT technology, the US never developed a functional ASAT capability during Eisenhower’s presidency.[2]

John F. Kennedy took the first steps toward a more militarised space policy by approving the full-scale development of the anti-satellite and anti-ballistic missile technologies first considered during Eisenhower’s tenure. Kennedy was concerned with the nuclear ‘missile gap’ that was said to be developing between the US and the Soviet Union and was alarmed by reports that the Soviets were seeking a capacity to place nuclear weapons in earth’s orbit. Ultimately, however, Kennedy chose not to increase tensions between the superpowers through military competition with the Soviets in space, but rather to seek a diplomatic agreement limiting or banning such hostile actions. Kennedy’s successor, Lyndon B. Johnson, brought about the successful culmination of these efforts with the signing of the United Nations’ Outer Space Treaty by the US and the Soviet Union in 1967. The terms of this treaty forbade the testing or positioning of nuclear weapons and other types of weapons of mass destruction in space, prohibited the construction of military installations or fortifications on the moon, and banned any military manoeuvres in earth’s orbit. The terms of the treaty stipulated that space would only be used for peaceful, scientific purposes.[3]

Richard Nixon’s presidency was not marked by significant changes in the US’ military space policy. Gerald Ford, however, set the US on a drastically new, and far more aggressive, course. During Ford’s presidency, a series of internal government review boards reported to the president that the US’ existing space policies were woefully insufficient to protect the nation’s important space assets from the threat of Soviet attack. Experts warned that deterrence was not enough. The US, they said, would need to develop not only substantial defences in space but would need to obtain potent offensive firepower as well. Ford acted on this advice by drafting a new military space policy. This policy declared that ‘the Soviets should not be allowed an exclusive sanctuary in space for critical military supporting satellites.’ The employment of non-nuclear anti-satellite technology, Ford declared, would enable the US to ‘selectively nullify certain militarily important Soviet space systems, should that become necessary.’ By the end of his presidency, Ford had put in place the US’ first outwardly aggressive military space policy, mandating that the nation obtain both offensive and defensive capabilities in space.[4]

Jimmy Carter followed in Ford’s footsteps by officially rescinding the US’ self-imposed prohibition on testing anti-satellite weaponry in space. In 1978 Carter promulgated a new space policy which affirmed the right of the US to ‘pursue activities in space in support of its right of self-defense.’ Regarding anti-satellite capability, Carter declared that the US would continue to seek a ‘verifiable ban’ on such technology but would continue its research and development ‘as a hedge against Soviet breakout.’ In other words, the Carter administration sought to obtain a ban on ASAT technology but was unwilling to let the US fall behind if the Soviets refused to cooperate or broke the terms of any prospective treaty.[5]

Excalibur_firing
Project Excalibur was a proposed x-ray laser based anti-missile technology. It used a nuclear warhead surrounded by a number of metal rods that acted to focus the output of the explosion into narrow beams that would be aimed at nuclear missiles and their warheads. (Source: Wikimedia)

When Ronald Reagan assumed the presidency in 1981 the US upped-the-ante yet again. One of the most notable products of Reagan’s whole presidency was his famous Strategic Defense Initiative (SDI), known popularly as the ‘Star Wars’ program. The nature of SDI changed significantly over time but was a program designed to give the US the capacity to intercept and destroy a massive Soviet missile barrage en-route to the US or its allies using space-based weapons platforms. Though regarded by most now and many in his own time as wildly unrealistic given the technology of the day, Reagan’s intention of stationing military weapons in space capable of defeating Soviet attacks on earth was far beyond anything the US had been willing to attempt before. This technological program was coupled with Reagan’s stated unwillingness to continue negotiating with the Soviet Union over any form of disarmament which he believed would interfere with American prerogatives or American interests.[6]

Following the breakup of the Soviet Union in 1991 the ambitious nature of Reagan’s SDI program was scaled back under George H.W. Bush from a massive global missile shield to a smaller, regional defensive program capable of interdicting missiles in smaller numbers but with higher accuracy, reflecting the new realities of a post-Cold War world. Both H.W. Bush and Bill Clinton maintained the US’ stated willingness to both attack and defend military assets in outer space, but the post-Cold War world saw a marked decrease in the perceived importance of military space readiness. Bill Clinton was notable for his administration’s desire to open up the US’ space technology for the benefit of civil and commercial interests around the world. GPS, the global positioning system which serves as the basis of modern satellite-directed navigation, was initially a military asset unavailable to the public until Clinton opened access to the program in the 1990s.[7]

030319-N-4142G-020
US Navy Ordnance handlers assemble Joint Direct Attack Munition (JDAM) bombs in the forward mess decks before putting them on elevators headed for aircraft on the flight deck aboard USS Constellation, c. 2003. JDAM’s are guidance kits that convert existing unguided bombs into precision-guided ‘smart’ munitions. The tail section contains an inertial navigational system and a global positioning system. JDAM improves the accuracy of unguided bombs in any weather condition. (Source: Wikimedia)

The advent of the Global War on Terror and the protracted conflicts in the Middle East has reinvigorated the government’s concern with space policy in recent years. George W. Bush took steps to limit the free access to GPS established by Bill Clinton claiming the nation’s enemies – whether conventional military, insurgent groups or terrorist organisations – could use GPS as a useful tool against US interests. Perhaps the most notable use of military satellite technology, however, has been the drone program. Satellite-enabled drone reconnaissance and bombing missions have been central to US military operations around the world since the 1990s and have only grown in importance. George W. Bush and Barack Obama each found space assets to be indispensable in the conduct of their military missions abroad and have each affirmed the importance of space in their iterations of national space policy.[8]

In his 2006 exposition of US space policy, George W. Bush declared:

In this new century, those who effectively utilize space will enjoy added prosperity and security and will hold a substantial advantage over those who do not. Freedom of action in space is as important to the United States as air power and sea power. In order to increase knowledge, discovery, economic prosperity, and to enhance the national security, the United States must have robust, effective, and efficient space capabilities.[9]

By declaring that space is just as crucial to the modern military as air power and sea power Bush seems to have prefigured the seminal development in US space policy that incumbent President Trump announced in 2018: the planned establishment of the US Space Force.

In the six decades between Eisenhower’s first military space policy and the space policy of Trump, the US has gone from a purely peaceful conception of space to a grudging acceptance of defensive militarisation to a modern policy in which an aggressive militarisation of space is regarded as essential to national defence. The elevation of space activities from auxiliary status to an independent branch of the armed forces not only solidifies the importance of space in the modern US military but represents the next logical step in a pattern of increasingly aggressive military space policy established since the earliest days of the US space program.

Bradley Galka obtained his Master of Arts degree in history from Kansas State University in 2017. He is currently pursuing a PhD at Kansas State. His research focuses on the relationship between politics and the military in the United States, particularly regarding fascism and the U.S. military during the inter-war period.

Header Image: The launch of the STS-74 mission aboard the space shuttle Atlantis from NASA’s Kennedy Space Center. (Source: NASA)

[1] Namrata Goswami, ‘The US Space Force and Its Implications,’ The Diplomat, 22 June 2018.

[2] Nelson Rockefeller, National Security Council, ‘US Scientific Satellite Program,’ NSC-5520, 20 May 1955; Dwight D. Eisenhower Presidential Library and Museum, Abilene, KS, S. DDE’s Papers as President, NSC Series, Box 9, 357th Meeting of the NSC, NAID#: 12093099, Everett Gleason, National Security Council, ‘US Objectives in Space Exploration and Science,’ March 1958; Eisenhower Presidential Library, DDE’s Papers as President, NSC Series, Box 9, 339th Meeting of the NSC, NAID#: 12093096, S. Everett Gleason, National Security Council, ‘Implications of Soviet Earth Satellite for US Security,’ 10 October 1957.

[3] George C. Marshall Institute, Presidential Decisions: NSC Documents from the Kennedy Administration National Security Council, ‘Certain Aspects of Missile and Space Programs,’ NSC-6108, 18 January 1961; George C. Marshall Institute, Presidential Decisions: NSC Documents from the Johnson Administration, Lyndon B. Johnson, ‘Cooperation with the USSR on Outer Space,’ NSAM-285, 3 March 1964; United Nations General Assembly, ‘Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, Including the Moon and Other Celestial Bodies, 27 January 27, 1967.

[4] George C. Marshall Institute, Presidential Decisions: NSC Documents from the Ford Administration, Brent Scowcroft, National Security Council, ‘Enhanced Survivability of Critical US Military and Intelligence Space Systems,’ National Security Decision Memorandum 333, 7 July 1976; George C. Marshall Institute,  Presidential Decisions: NSC Documents from the Ford Administration, Brent Scowcroft, National Security Council, ‘US Anti-Satellite Capabilities,’ National Security Decision Memorandum 345, 18 January 1977.

[5] George C. Marshall Institute, Presidential Decisions: NSC Documents from the Carter Administration, Jimmy Carter, Presidential Review Memorandum – NSC 23, ‘A Coherent US Space Policy,’ 28 March 1977; George C. Marshall Institute, Presidential Decisions: NSC Documents from the Carter Administration, Jimmy Carter, Presidential Directive/NSC 33, ‘Arms Control for Anti-Satellite (ASAT) Systems,’ 10 March 1978; The Jimmy Carter Presidential Library and Museum, Atlanta, GA, Presidential Directives, Jimmy Carter, Presidential Directive/NSC-37, ‘National Space Policy,’ 11 May 1978, pp. 1-2.

[6] George C. Marshall Institute, Presidential Decisions: NSC Documents from the Reagan Administration, Ronald Reagan, National Security Decision Directive Number 42, ‘National Space Policy,’ 4 July 1982.

[6] George C. Marshall Institute, Presidential Decisions: NSC Documents from the Reagan Administration, Ronald Reagan, National Security Decision Directive Number 85, ‘Eliminating the Threat from Ballistic Missiles,’ 25 March 1983; Ronald Reagan Presidential Library, Simi Valley, CA, Office of the Press Secretary, ‘White House Announcement on the Development of a Defensive System Against Nuclear Ballistic Missiles,’ 25 March 1983; George C. Marshall Institute, Presidential Decisions: NSC Documents from the Reagan Administration, Ronald Reagan, National Security Decision Directive Number 119, ‘Strategic Defense Initiative,’ 6 January 1984; George C. Marshall Institute, Presidential Decisions: NSC Documents from the Reagan Administration, Ronald Reagan, National Security Decision Directive Number 195, ‘The US Position: Nuclear and Space Talks,’ 30 October 1985.

[7] George C. Marshall Institute, Presidential Decisions: NSC Documents from the George H.W. Bush Administration, George H.W Bush, NSD-30, NSDP-1, ‘National Space Policy,’ 2 November 1989, p. 3; George C. Marshall Institute,  Presidential Decisions: NSC Documents from the Clinton Administration, Office of the Press Secretary, PDD/NSC-23, ‘Statement on Export of Satellite Imagery and Imaging Systems,’ 10 March 1994; George C. Marshall Institute, Presidential Decisions: NSC Documents from the Clinton Administration, William Clinton, PDD/NSTC-2, ‘Convergence of US-Polar-Orbiting Operational Environmental Satellite Systems,’ 5 May 1994; George C. Marshall Institute, Presidential Decisions: NSC Documents from the Clinton Administration, Office of the Press Secretary, ‘Fact Sheet: US Global Positioning System Policy,’ 29 March 1996.

[8] George C. Marshall Institute, Presidential Decisions: NSC Documents from the George W. Bush Administration, George W. Bush, ‘US National Space Policy,’ 31 August 2006; George C. Marshall Institute, Presidential Decisions: NSC Documents from the Obama Administration, Barack Obama, ‘National Space Policy of the United States of America,’ 28 June 2010.

[9] George W. Bush, ‘US National Space Policy,’ 31 August 2006.

The Rise of Armed Unmanned Aircraft – Part Two

The Rise of Armed Unmanned Aircraft – Part Two

By Dr Peter Layton

Editorial Note: In the second part of a two-part article, Dr Peter Layton explores the evolution of the armed unmanned aircraft from its first use in the Second World War through to the First Gulf War. The first part of this article can be found here.

In retrospect, during the Cold War, the dice were stacked against armed unmanned aircraft.  Improving aircrew survivability in a major war – the primary requirement – involved operating in a very hostile, sophisticated air environment in the presence of extensive jamming that could defeat the data links necessary to control unmanned aircraft. Furthermore, the computers, aircraft systems and onboard sensors needed to make such an aircraft work were all big, cumbersome, unreliable and costly. Even when cost was not an issue as in the case of Advanced Airborne Reconnaissance System project of the late Cold War, the unmanned aircraft designs ended up being very large, technically challenging, of doubtful effectiveness and somewhat inflexible in operation.

In the 1990s the stars radically realigned to favour armed unmanned aircraft. In the early 1990s, armed violence erupted in Yugoslavia. The conflict was slow paced with a need for protracted surveillance rather than episodic reconnaissance, but none of the existing systems seemed quite right. Manned aircraft lacked persistence while satellites had predictable orbits and known overhead times, could not easily be repositioned to survey new areas and were impacted by bad weather. Meeting the new requirements driven by the wars in the Balkans was however eased somewhat by the air environment now being permissive with little threat from air defences. In the winter of 1992, the US Joint Staffs and the Office of the Secretary of Defense initiated a quick reaction program for a long-endurance unmanned aircraft. First flight came within six months of contract award, and a year later the General Atomics Predator unmanned aircraft was in operations over Bosnia.

Seemingly quick, the Predator’s rapid entry into service exploited some 15 years of DARPA experiments, trials, partial successes and utter failures. The overall airframe design was point-optimised for the particular mission with a slender fuselage with pusher configuration, long sailplane-like wings, inverted V-tails and a ventral rudder. The engine was a horizontally-opposed, liquid-cooled, four-stroke, geared piston engine with a minimal frontal area that offered high power at a moderate rpm, very low fuel consumption and very low vibration. The Vietnam-era unmanned jet aircraft saved weight by not being fitted with an undercarriage but were difficult to launch and recover. Predator’s used a tall, lightweight fixed undercarriage that gave considerable ground clearance.  This design meant that the Predator had a maximum speed of only some 120kts, but they could loiter for almost a day flying at 70kts at an altitude of 12-15,000 ft. This performance was adequate – if not sparkling – for the new requirement for long persistence albeit useless for the earlier Cold War type missions where survivability was critical.

In design terms, the airframe and engine were skillful but somewhat primitive having more in common with the 1944 TDR-1 unmanned aircraft (see Part One here) than a 1990s military aircraft. The real innovations that addressed the big technological challenge – how to fly and operate an unmanned aircraft in combat for 24 hours or more without on-board humans – lay in the electronics. Computer advances now allowed dramatic increases in computing power, speed and reliability while communication advances connected the Predator literally to the world, changing everything.

Controllability was addressed using a purpose-built flight control computer more powerful than that used in the F-16 fighters of the time. This made the Predator stable in flight in all weathers and easy to control remotely especially during the problematic take-off and landing phases. Navigation was addressed using the satellite-based Global Positioning System (GPS). Earlier unmanned aircraft had significant navigation problems with Vietnam era aircraft often missing their planned target by some 10-12 kilometres. GPS was a real breakthrough that provided an off-board, ubiquitous, highly accurate navigation method. However, it was new communications technology that made armed unmanned aircraft practical.

Over its first few years of operational service, the Predator system took advantage of and was integrated into, the rapidly advancing online world. It broke away from being dependent on line of sight control with the fitment of high bandwidth satellite communication data links. This has made the armed unmanned aircraft both remarkably flexible and remarkably useful.

Remote Split Operations endowed remarkable flexibility. A small team at a forward airbase launched a Predator using a line-of-sight wireless link and then transferred control to operators located anywhere globally who used satellite communications links. These remote operators then flew the long-duration operational part of each sortie, changing crews throughout the mission as necessary. After the mission, the Predator was handed back to the small forward deployed team which landed the aircraft and turned it around for the next mission. This way of operating meant the forward team was small, requiring only very limited support and minimising the people and equipment needed to be deployed.

The second aspect – that of being remarkably useful – was made possible using modern communications technology that allowed data from the unmanned aircraft to be sent worldwide in near-real-time.

By the late 1990s, sensor technology had considerably advanced allowing relatively small high-quality daylight and night television systems to be made for an affordable cost. Moreover, these, when combined with a laser rangefinder and the onboard GPS navigation system, allowed an unmanned aircraft to now very accurately determine the location of the object being looked at. Such pictures and the position data though were of limited use if access to them had to wait for the aircraft’s return to base. Now with high-bandwidth satellite communication systems, full-motion video tagged with its accurate location could be sent to distant locations. Multiple users worldwide could access real-time imagery of events as they occurred.

The impact of this was that not just the aircrew controllers could see the video and make use of it. Now local land, sea and air commanders could have instant access to the imagery allowing more active command and control of assigned forces. High-level commanders and government ministers at home could also gain an appreciation of the tactical events unfolding. These live feeds from the world’s battlefield were compelling viewing; the term ‘Predator Porn’ was coined – you cannot take your eyes off it.

As importantly, imagery analysts and other exploitation specialists at locations worldwide could now bring their expert skills to bear to provide instantaneous advice on niche aspects to the complete command chain, including the operators controlling the Predator. The satellite communications links allowed many skilled people to be ‘onboard’ the unmanned aircraft flying in some distant theatre of operations, making its operations much more useful than a manned aircraft traditionally could be.

161208-F-YX485-100
A US Air Force MQ-9 Reaper awaits maintenance 8 December 2016, at Creech Air Force Base. The MQ-1 Predator has provided many years of service, and the USAF is transitioning to the more capable MQ-9 exclusively and will retire the MQ-1 in 2018 to keep up with the continuously evolving battlespace environment. (Source: US Department of Defense)

The final technological piece in the armed unmanned aircraft jigsaw came together with the fitment of air-to-ground weapons. On operations in the Balkans in the 1990s, Predator’s provided imagery that was used to cue manned aircraft to essential targets, so they could deliver weapons on them. This worked well but sometimes the manned aircraft were not readily available and hours might elapse before they were overhead. This delay meant that hostile forces could group and attack civilians or friendly forces before defensive measures could be taken.  To overcome this, lightweight, small-warhead Hellfire missiles were fitted to the Predators that could be fired by the remote aircrew controllers against time-urgent targets. The range of weapons that could be fitted greatly expanded in later Predator developments but the fundamental constraint of needing to be lightweight to allow the unmanned aircraft to fly long-duration missions remained. Manned aircraft were still necessary for the battlefield situations and targets that required large warhead weapons.

In the early part of the 21st Century, armed unmanned aircraft finally came of age. This occurred with the coming together of several factors. Firstly, in the operational circumstances of the time, the air environment was much less hostile allowing simple aircraft to survive and potentially undertake meaningful roles. Secondly, there was now a pressing operational need for persistent surveillance; a task manned aircraft were unable to meet. Thirdly, aircraft technology has sufficiently mature to allow an unmanned aircraft to be controllable, navigate successfully, carry suitable sensors and incorporate satellite communications equipment. Lastly, in the internet age, once a video stream was received anywhere, it could be sent worldwide to allow anybody with an authorised computer terminal to access and use it.

After more than half-century of development, the aircraft was the easy bit. It was the electronics onboard and overboard, the ground controlling equipment, the complex support base and the large numbers of skilled staff involved at every level that made the whole operation work. It was not surprising then that defence forces pivoted to talk less of unmanned aircraft and towards terminology such as Unmanned Air Systems. Predators and their ilk were a system of systems, mostly ground-based but with one element that flew.

Dr Peter Layton is a Visiting Fellow at the Griffith Asia Institute, Griffith University. His PhD is in grand strategy, and he has taught on this at the US National Defense University. He is the author of the book Grand Strategy.

Header Image: An MQ-1 Predator, armed with AGM-114 Hellfire missiles, on a combat mission over southern Afghanistan, c. 2008. (Source: Wikimedia)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

The Rise of Armed Unmanned Aircraft – Part One

The Rise of Armed Unmanned Aircraft – Part One

By Dr Peter Layton

Editorial Note: In the first part of a two-part article, Dr Peter Layton explores the evolution of the armed unmanned aircraft from its first use in the Second World War through to the First Gulf War.

In the Solomon Islands off Australia’s northern shores, on the 19 October 1944, a US Navy flown, Interstate Aircraft-built TDR-1 dropped a mix of ten 100lb and 500lb bombs against Japanese gun emplacements on Ballale Island.  This was the first operational armed unmanned aircraft attack in history.

The twin-engined unmanned aircraft involved was just one of some fifty sent into combat in late 1944 with Special Task Air Group One. The armed unmanned aircraft took off under radio control that was then transferred to accompanying manned TBM-1C Avenger control aircraft for the long transit to the target area. The control aircraft remained some 8-12 kilometres outside of the ground defences while using a data linked real-time video picture displayed on a cockpit mounted television screen for close-in guidance. Few of the Air Group personnel involved had even seen a television set before they joined the unit. Their feats would not be replicated until early in the 21st century.

In truth, while after 1944-armed unmanned aircraft continued to attract considerable interest and at times funding, the technology available was too immature. The crucial issue was to find technological solutions that could overcome the many problems arising from not having a person in the aircraft. Finding the right blend of complex technological solutions took several decades, but this was not enough to see armed unmanned aircraft fly again in combat. There had to be a compelling operational need only they could best meet.

Curiously enough, the next armed unmanned aircraft was again operated by the US Navy. In the 1950s, the US Navy was concerned that the Soviets were building submarines faster than it could build anti-submarine warfare (ASW) destroyers. The solution was to upgrade a large number of old Second World War vessels, but these were too small to operate manned ASW helicopters from. Soviet submarines of the time could fire on ASW destroyers at longer ranges than the destroyers could fire back. A helicopter that could drop homing torpedoes was necessary to allow them to engage first. The answer was the small QH-50 Drone Anti-Submarine Helicopter controlled by the ship’s crew through a line-of-sight data link and able to deliver two MK-44 ASW homing torpedoes where and when required. There were numerous problems and many crashes, but hundreds were built and saw service throughout the 1960s.

QH-50 enthusiasts consider the more pressing operational demands arising from the worsening Vietnam War prematurely killed the unmanned helicopter off, and in this, they may be right. In the second half of the 1960s, there was a significant air war almost daily over North Vietnam. Attacking US Air Force (USAF) and US Navy strike aircraft were pitched against a continually improving Soviet-equipped integrated air defence system featuring the latest SA-2 and SA-3 Surface-to-Air Missile systems. Bomb damage assessment was a real problem; bad weather and the heavy defences made manned aircraft reconnaissance problematic.

QH-50C_DD-692_1969
A QH-50C anti-submarine drone hovers over the destroyer USS Allen M. Sumner during a deployment to the Mediterranean Sea in 1969. (Source: Wikimedia)

The solution was a fast jet, unmanned aircraft and again hundreds were built, and thousands of sorties flown. These Ryan Lightning Bugs were launched from modified C-130 transport aircraft, flew pre-planned missions and were then recovered using a parachute that was caught in mid-air by a large helicopter. This was an inflexible and expensive way to do business that only fitted the oddities of the Vietnam air environment. With the war’s end in 1975, interest also faded albeit after some trials of armed unmanned aircraft carrying bombs and missiles.

The USAF’s focus shifted to the European Central front then characterised by strong air defences, long-range fighters, a harsh electromagnetic environment and extensive jamming. Launching and recovering unmanned aircraft using slow, vulnerable C-130 transports and CH-53 helicopters in such a hostile air environment looked both very unappealing and most probably operationally ineffective.

The need that drove TDR-1 development however remained. When attacking well-defended targets in a significant war, aircrew survivability was still a real concern. In the late 1970s, the aircrew losses in a new major European War looked as though they would be exceptionally heavy, but there would not be time to bring newly trained aircrews into service as in the Second World War: what should be done? Could armed unmanned aircraft meet the need? After much thought and numerous experiments, the answer adopted instead was to invest sizable funds into high performance manned aircraft equipped with stand-off precision-guided weapons that lowered the sortie numbers required to inflict the necessary damage, field a fleet of electronic warfare attack aircraft able to defeat hostile SAM systems and build secret stealth bombers, the F-117 fleet. This approach was stunningly validated in the short very successful air campaign of the 1991 Gulf War.

Unmanned aircraft lost out not because of aviator biases as some assume but because of their technological immaturity, their relative operational ineffectiveness and their prohibitive costs. Other systems were just plain better. Unmanned aircraft were left as a potential solution in search of a mission. However, the world was about to change.

Dr Peter Layton is a Visiting Fellow at the Griffith Asia Institute, Griffith University. His PhD is in grand strategy, and he has taught on this at the US National Defense University. He is the author of the book Grand Strategy.

Header Image: An Interstate TDR-1 at the National Museum of Naval Aviation, Pensacola, Florida. (Source: Wikimedia)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

Inventing the Enemy: Colonel Toon and the Memory of Fighter Combat in Vietnam

Inventing the Enemy: Colonel Toon and the Memory of Fighter Combat in Vietnam

By Dr Michael Hankins

A recent post on the popular website The Aviation Geek Club told the story of what they called ‘the most epic 1 v 1 dogfight in the history of naval aviation.’[1] This is the story in which Lieutenants Randy ‘Duke’ Cunningham and William Driscoll, from among the first batch of graduates from the US Navy’s then-new Top Gun training program, shot down the number one North Vietnamese Air Force fighter ace, Colonel Toon, and became the first American aces of the war. Very little of that tale is true, but it makes for an exciting story, and this website is not the first to tell it. Although the details of these claims bear some scrutiny, the tale raises more interesting more significant questions about how and why legends like this form and grow over time.

Cunningham and Driscoll meet with Secretary of the Navy John Warner and CNO Admiral Elmo Zumwalt
Lieutenant Randy Cunningham (second from left) in a ceremony honouring him and Lieutenant William Driscoll (third from left), the US Navy’s only Vietnam War air ‘Aces’ in June 1972. On the left is John Warner, then Secretary of the Navy, and on the right is Admiral Elmo Zumwalt, then Chief of Naval Operations. (Source: Wikimedia)

Combat situations breed storytellers. Any stressful, exciting, death-inducing human endeavour does. Perhaps even more so among fighter pilots engaging in acrobatic dogfights at near (or above) the speed of sound, combat stories, as they are told and retold, heard and re-heard, become legendary. Especially enticing is the need to explain defeat or even a lack of decisive victory. During the Vietnam War, skilled North Vietnamese pilots shot down US aircraft in numbers that some Americans found embarrassing. The final official tally of air-to-air combat kills was 137 to 67, almost exactly 2:1 in favour of the US. This sounds like a victory to some. Indeed, General William Momyer, Commander US Seventh Air Force, saw it that way when he recalled later that winning by 2:1 was ‘an acceptable rate.’[2] However, it did not seem acceptable to those who drew historical comparisons. The US had fared better in previous wars, peaking in the Korean War, which saw US F-86 pilots defeating MiG-15s by a factor of more than 10:1.[3] By those standards, Vietnam felt like a massive step backwards.

Explaining the seeming backslide in combat performance was the official task of several investigations, from the US Air Force’s Red Baron Reports to the US Navy’s Ault Report. Pilots ranted about the poor performance of their planes, especially the F-4 Phantom’s thick black smoke trails that gave away its position to anyone caring to look up. Pilots scoffed at the lack of training in basic combat manoeuvring, much less dogfight training. They decried the fact that only ten percent of their missiles hit anything, and that their F-4s lacked the most basic instrument of air combat: a gun. Without a trigger to pull, many argued, how were they supposed to shoot anyone down?

Other pilots took to creating legends. What could explain the fact that so many US aircraft were getting shot out of the sky by an allegedly inferior, third-world country’s hand-me-down air force that only had a few dozen aeroplanes to its name? There must be an amazing, inexplicable, near-mythical, born-genius dogfighter on the enemy side.

Thus, was born the legend of Colonel Toon, AKA Colonel Tomb, AKA Nguyen Tomb.

Telling the Tale

As the legend goes, Toon was more than a double ace, with at least twelve kills to his name, maybe as high as 14, which was how many stars were allegedly painted on the side of his MiG. Toon displayed the typical fighter pilot personality characteristics of aggressiveness and independence. He utilised frequent head-on attacks and a ‘lone wolf’ style of engaging in which he refused to obey the orders of his ground controller and engaged F-4s in vertical manoeuvres, where his MiG was at an inherent disadvantage.[4] According to the typical story, as American pilots struggled, the US Navy’s Ault Report had led to the introduction of Top Gun: a graduate school for fighter pilots. The intensive training there gave US Navy aviators the skills to destroy MiGs wherever they found them. Moreover, allegedly, Top Gun graduates Cunningham and Driscoll used their newly found skills to shoot Toon out of the sky on 10 May, during a massive dogfight at the beginning of Operation Linebacker. Cunningham claimed this himself, and the story is still often repeated in popular outlets.[5]

There is just one problem: almost none of this is true. Top Gun, although undoubtedly useful, was, at the time, a tiny outfit that many leaders in the US Navy did not take seriously. The narrative of Top Gun as the saving grace of air-to-air combat also ignores all of the other useful changes instigated by the Ault Report, as well as other practices the US Navy was doing at the time. These included enhancements to their aircraft, upgraded missiles, the increased reliance on early warning radar systems that gave pilots situational awareness, and the increase in jamming of enemy communications that limited North Vietnamese situational awareness.[6] Besides that, Cunningham and Driscoll were not even Top Gun graduates. Moreover, what of Colonel Toon? He was simply not real. He did not exist.

NVAF MiG-19 pilots of the 925th fighter squadron discussing tactics in 1971
North Vietnamese Air Force MiG-19 pilots of the 925th fighter squadron discussing tactics in 1971. (Source: National Museum of the United States Air Force)

Busting Myths

To unravel these tales, let’s start with Cunningham and Driscoll at Top Gun. The principal disputed aspect of the common claim hinges on the word ‘graduates.’ Cunningham and Driscoll had not been students at Top Gun, but they were involved with the school. Before the start of Operation Linebacker in 1972, Top Gun was in bad shape. It had struggled and fought to get access to aeroplanes to train in, and throughout 1971 most of the instructors assumed it was only a matter of time before the US Navy would shut the place down.[7] With limited student slots, selection for Top Gun was competitive. Only the top-performing pilots of select squadrons were picked, and Cunningham had simply not made the cut – twice. Cunningham’s roommate Jim McKinney, and later Steve Queen, both of whom were his colleagues in VF-96, were selected ahead of him. This was in part because they were viewed as more skilled, partially because Top Gun selection favoured career officers the US Navy could count on to stay in the service after the war, which did not, at that time, describe Cunningham. Also, as his skipper noted, Cunningham was simply immature. Top officers and those selected for the coveted Top Gun training needed to be more than just typical fighter jocks, they needed to be well-rounded officers capable of strong leadership. Cunningham’s commander did not see those qualities in him.[8] His fellow pilots noted the same lack of leadership. When Cunningham later pled guilty to taking millions of dollars in bribes as a congressman, those that served with him said they were ‘not necessarily surprised,’ because even when he was a pilot during the war, he had shown a remarkable lack of officership. Some noted that Cunningham was ‘a mind undistracted by complicated thoughts.’[9]

Cunningham and Driscoll
An autographed picture of Lieutenants Cunningham and Driscoll (Source: Randy Cunningham and Jeff Ethell, Fox Two: The Story of America’s First Ace in Vietnam (Mesa, AZ: Champlin Fighter Museum, 1984)

Just because Cunningham was passed over for Top Gun does not mean he was not participating in some way. In 1971, during his squadron’s turnaround period, Cunningham was assigned to temporary duty at Top Gun as a ‘gopher,’ mostly doing paperwork for the school. However, it gave him a chance to listen to some of the lessons and occasionally sit in the backseat of adversary aircraft. He spent much time with the Top Gun instructors, including Jim Laing, J.C. Smith, Dave Frost, and Jim Ruliffson. The squadron then went on leave for a month, during which time Cunningham’s new commanding officer, Early Winn, permitted him to run exercises in the squadron’s F-4 Phantoms since they would be sitting idle for that time. Cunningham used the opportunity to practice what he had learned from his informal lessons. Upon returning from leave, the whole squadron became the first to go through the new Fleet Adversary Program, which some described as ‘mini-Top Gun.’ Primarily the program was a short workshop that introduced some of the concepts that Top Gun explored in more detail. VF-96 ran the workshop twice before returning to Vietnam.[10]

The claim that Cunningham and Driscoll were Top Gun graduates, as is often repeated, is false, but it is easy to see why many might be confused about that. Indeed, in an ad hoc sense, the pair had some access to higher level training than others, including Top Gun instructors. The other claim; that the duo’s fifth kill was the legendary Toon – or that there even was a Toon – is much more dubious.

Part of the confusion comes from the insistence of US SIGINT (Signals Intelligence) by the National Security Agency (NSA) that Toon was real. Claiming to have cracked the North Vietnamese callsign system, the NSA, intercepting enemy communications, began keeping track of individual pilots. They especially singled-out a North Vietnamese MiG-21 ace pilot named Toon, based at Phuc Yen, who developed a reputation for aggressively disrupting B-52 raids. They referred to him as ‘The Red Baron of North Vietnam,’ or ‘an airborne outlaw in the image of a Wild West gunslinger,’ who, whenever he was spotted, ‘U.S. planes took up the chase like some sheriff’s posse of old.’ The NSA claimed that Momyer was ‘obsessed’ with destroying Toon.[11] This could be possible, although it is strange then, that Momyer does not mention Toon at all in his book on the subject.

Cunningham’s debriefing report from 10 May 1972 – in which he very carefully words his statement to give the reader the impression that he was a Top Gun student without stating that directly – has ‘The 5th Kill (Col. Tomb)’ typed in the margin. After describing the dogfight, he claimed:

Intelligence later revealed that this 17 driver was Colonel Tomb, the North Vietnamese ace credited with 13 U.S. aircraft.[12]

Cunningham did not identify who told him this, and his claim raises questions, as it seems to contradict the intelligence from the time. The NSA referred to this pilot as ‘Toon,’ not ‘Tomb,’ and did not identify him as a Colonel. The NSA also specified him as a MiG-21 pilot whereas the Cunningham kill was a -17. They also credited Toon with five kills, not the 13 that Cunningham referenced. Furthermore, the NSA report states that Toon was never defeated, and eventually was promoted out of combat flying and became a ground controller.[13] Cunningham might be telling the truth that some intelligence source, which he does not identify, told him that the -17 he killed was Tomb, but because his claims are so at odds with the NSA’s information on nearly every point, Cunningham’s story raises more questions than it answers.

Mikoyan-Gurevich MiG-17F
A Mikoyan-Gurevich MiG-17F at the National Museum of the United States Air Force. (Source: National Museum of the United States Air Force)

However, the NSA could also be wrong. In fact, they probably are. Even though the NSA claimed Toon was real at the time, there is little evidence to verify this. Indeed, any ace pilots that North Vietnam had – and eventually they had fifteen that were confirmed by US sources, though Vietnamese records claim sixteen, which was triple the number of US aces – would be of immense propaganda and morale value for their cause. If Toon were real, he would likely have been celebrated as a national hero. When researchers and former pilots began talking to North Vietnamese veterans, any questions about Toon were met with confusion. There’s no record of a Toon or Tomb, which is not even a Vietnamese name. Some have claimed that ‘Toon’ was the result of SIGINT operators mishearing the name of Din Tonh, who was an effective pilot known for ‘lone wolf’ attacks. However, Tonh also flew the MiG-21, not the -17, and was not an ace, much less one with kills in the double digits.[14]

Historian Roger Boniface travelled to North Vietnam and conducted extensive interviews with former MiG pilots. His conclusion? Toon was merely an invented figment of American fighter pilots’ imagination, made up specifically to stroke their damaged egos. As he put it:

The existence of Colonel Toon in the mind of an American pilot may have provided a psychological comfort zone if a North Vietnamese pilot should out-fly him or, even worse, shoot him down.[15]

NVAF ace pilot Nguyen Van Coc meeting with Ho Chi Minh
Nguyen Van Coc meeting Ho Chí Minh, N.D. (Source: Wikimedia)

The closest real pilot to fitting the description, however, was Nguyen Van Coc. He flew a MiG-21 with 14 ‘kill’ stars painted on the side. Vietnam officially credits Van Coc with nine kills of US aircraft, and the US has officially recognised six of them. Still, Van Coc cannot have been the ace-making kill for Cunningham and Driscoll, not only because he flew MiG-21s, but by 1968 he had already been pulled out of combat duty and made an instructor of new North Vietnamese pilots.[16]

Conclusion

Why does this controversy – and others like it – continue to plague the memory of the Vietnam War? Possibly because losing a war is psychologically devastating. This is evident simply in how divisive it is to call the American-Vietnam War a ‘loss’ for the US. Some are reluctant to do so in any terms, but no one can deny that the US did not achieve its strategic goal of creating a stable, independent, non-communist South Vietnamese state. Indeed, North Vietnam did achieve its goal of creating a unified communist state. However, the air-to-air war was not at all the make-or-break factor in any of that. The US did not fail in their goals because of the MiG force. Also, former war records aside, Momyer was not wrong to claim that a 2:1 kill ratio in air-to-air combat is still a victory, in at least a technical definition although the ability of MiGs to frequently interrupt bombing strikes was a more significant problem. Despite these clarifications, Vietnam felt like a loss even to many air combat pilots. Explaining that sense of loss, or even just a sense of a lack of decisive victory is difficult at best. Many pilots, and some historians and observers since, including Cunningham and Driscoll, found it easier to invent an enemy rather than must deal with those painful feelings head-on. This is not an isolated phenomenon. Nearly every war sees these types of inventions as a coping mechanism. Toon may not exist, but what he represents as a way of dealing with the psychological trauma of warfare, is all too real.

Dr Michael Hankins is an Assistant Editor at From Balloons to Drones and a Professor of Strategy at the USAF Air Command and Staff College eSchool. He is also a former Instructor of Military History at the US Air Force Academy. He earned his PhD from Kansas State University in 2018 with his dissertation, ‘The Cult of the Lightweight Fighter: Culture and Technology in the U.S. Air Force, 1964-1991.’ He completed his master’s thesis at the University of North Texas in 2013, titled “The Phantom Menace: The F-4 in Air-to-Air Combat in the Vietnam War.” He has a web page here and can be found on Twitter at @hankinstien.

Header Image: US Navy McDonnell Douglas F-4J Phantom II ‘Showtime 100,’ which was assigned to VF-96 of Carrier Air Wing 9 onboard USS Constellation Lieutenants Randy Cunningham and William Driscoll used this aircraft for their third, fourth, and fifth MiG-kills on 10 May 1972. (Source: Wikimedia)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

[1] Dario Leone, ‘Showtime 100 Vs Colonel Toon: the most epic 1 V 1 dogfight in the history of naval aviation,’ The Aviation Geek Club, 9 May 2018

[2] William W. Momyer, Air Power in Three Wars (Maxwell AFB, AL: Air University Press, 2003), p. 178.

[3] For example, see: Kenneth P. Werrell, Sabres Over MiG Alley: The F-86 and the Battle for Air Superiority in Korea (Annapolis, MD: Naval Institute Press, 2005).

[4] Roger Boniface, MiGs Over North Vietnam: The Vietnam People’s Air Force in Combat, 1965-75 (Mechanicsburg, PA: Stackpole Books, 2008), p. 59, 74.

[5] For Cunningham’s claim, see: Randy Cunningham and Jeff Ethell, Fox Two: The Story of America’s First Ace in Vietnam (Mesa, AZ: Champlin Fighter Museum, 1984), pp. 107-8.

[6] For a more in-depth look at some of these changes in both the US Navy and the USAF, see Michael Hankins, ‘The Teaball Solution: The Evolution of Air Combat Technology in Vietnam 1968-1972,’ Air Power History, 63 (2016), pp. 7-24.

[7] Robert Wilcox, Scream of Eagles (New York, NY: Pocket Star Books, 1990), pp. 203-6.

[8] Ibid, pp. 207-8.

[9] Alex Roth, ‘Shooting down Cunningham’s legend: Ex-comrades in arms say disgraced congressman was a good fighter pilot but a poor officer with flair for self-promotion,’ San Diego Union Tribune, 15 January 2000.

[10] Wilcox, Scream of Eagles, pp. 210-12; Cunningham, Fox Two, p. 106.

[11] ‘On Watch: Profiles from the National Security Agency’s past 40 years,’ National Security Agency, 1984, declassified 2007, pp. 58-9.

[12] US Air Force Academic Library, Lieutenant Randy Cunningham, ‘Naval Intelligence Debriefing of 10 May 1972 MiG Engagement by VF-96,’ 10 May 1972, pp. 5-6.

[13] ‘On Watch,’ pp. 58-9.

[14] Sebastien Roblin, ‘The Legend of the Vietnam War’s Mystery Fighter Ace,’ War is Boring, 3 July 2016.

[15] Boniface, MiGs Over North Vietnam, p. 74.

[16] Ibid.; Roblin, ‘The Legend of the Vietnam War’s Mystery Fighter Ace.’

NORAD at 60

NORAD at 60

By Dr Brian Laslie

NTS
NORAD tracks Santa (Source: Author)

Editorial Note: This weekend, 12 May, the North American Aerospace Defense Command (NORAD), the Bi-National defense command between the United States and Canada (and yes, the same organization that tracks Santa every Christmas Eve) is celebrating its 60th Anniversary. As such, we here at From Balloons to Drones wanted to share a portion of the history of this unique organization. The following comes to you from the NORAD History Office and our Assistant Editor Dr Brian Laslie, who is also a historian at NORAD.

With the beginning of the Cold War, American defence experts and political leaders began planning and implementing a defensive air shield, which they believed was necessary to defend against a possible attack by long-range, manned Soviet bombers. By the time of its creation in 1947, as a separate service, it was widely acknowledged the Air Force would be the centre point of this defensive effort. Under the auspices of the Air Defense Command (ADC), first created in 1948, and reconstituted in 1951 at Ent Air Force Base (AFB), Colorado, subordinate US Air Force (USAF) commands were given responsibility to protect the various regions of the United States. By 1954, as concerns about Soviet capabilities became graver, a multi-service unified command was created, involving US Navy, US Army, and USAF units – the Continental Air Defense Command (CONAD). USAF leaders, most notably Generals Benjamin Chidlaw and Earle Partridge, guided the planning and programs during the mid-1950s. The USAF provided the interceptor aircraft and planned the upgrades needed over the years. The USAF also developed and operated the extensive early warning radar sites and systems which acted as ‘tripwire’ against air attack. The advance warning systems and communication requirements to provide the alert time needed, as well as command and control of forces, became primarily a USAF contribution, a trend which continued as the nation’s aerospace defence matured.

DF-ST-82-08601
Four US Air Force Convair F-106A Delta Dart fighters from the 5th Fighter Interceptor Squadron, Minot AFB, fly over Mount Rushmore, on 27 July 1981. (Source: Wikimedia)

As USAF leaders developed plans and proposed warning system programs, they became convinced of the logical need for extended cooperation with America’s continental neighbour, Canada. US-Canada defence relationships extended back to the Second World War when the two nation’s leaders formally agreed on military cooperation as early as 1940 with the Ogdensburg Declaration. These ties were renewed in the late 1940s with further sharing of defence plans in light of increasing Soviet military capabilities and a growing trend of unstable international events, such as the emergence of a divided Europe and the Korean War.

Defence agreements between Canada and the United States in the early 1950s centred on the building of radar networks across the territory of Canada – the Mid- Canada Line (also known as the McGill Fence), the Pinetree Line, and the famous Dew Line. This cooperation led to a natural extension of talks regarding the possible integration and execution of air defence plans. The Royal Canadian Air Force (RCAF) and USAF exchanged liaison officers and met at critical conferences to discuss the potential of a shared air defence organisation. By 1957, the details had been worked out, and the top defence officials in each nation approved the formation of the NORAD, which was stood up on 12 September at Ent AFB, in Colorado Springs, Colorado, home of the US CONAD and its subordinates, including USAF ADC. General Earl Partridge, USAF, who was both the ADC and CONAD Commander, also became commander of NORAD, and the senior Canadian RCAF official, Air Marshal Roy Slemon, who had been the critical Canadian delegate in most of the cooperation talks, became deputy commander, NORAD. Nine months after the operational establishment of the command, on 12 May 1958, the two nations announced they had formalised the cooperative air defence arrangements as a government-to-government bilateral defence agreement that became known as the NORAD Agreement. The NORAD Agreement and its associated terms of reference provided the political connections which would make possible the longevity of the Canadian-US aerospace defence relationship into the future years. The NORAD Agreement, with its requirement for periodic review, ensured flexibility to adapt to a changing defence environment as would be evident by the events that would soon face the fledgeling command.

NORAD Map 1960s

Within one year of its establishment, NORAD began the process of adapting its missions and functions to ‘a new and more dangerous threat.’ During the 1960s and 1970s, the USSR focused on creating intercontinental and sea-launched ballistic missiles and developed an anti-satellite capability. The northern radar-warning networks could, as one observer expressed it, ‘not only [be] outflanked but literally jumped over.’ In response, the USAF built a space-surveillance and missile-warning system to provide worldwide space detection and tracking and to classify activity and objects in space. When these systems became operational during the early 1960s, they came under the control of the NORAD.

In NORAD’s 60-year history, perhaps the most notable symbol of the command has been the Cheyenne Mountain Operations Center (CMOC), often referred to as simply ‘Cheyenne Mountain.’ This vast bunker complex, which became fully operational in 1966, sat more than 1,500 feet underground and consisted of 15 buildings, which comprised the central collection and coordination facility for NORAD’s global-sensor systems.

North-Portal_large
Entrance to Cheyenne Mountain Operations Center complex. (Source: Author)

Throughout the 1970s, the ballistic missile threat caused policymakers to reassess the effectiveness of the air defence system. This meant the potential demise of the arguments for enhanced traditional air defence and moved NORAD to focus on such challenges as an improved warning of missile and space attack, defence against the ICBM, and more significant protection and survival of command, control and communication networks and centres. This resulted in a reduction of the USAF interceptor forces and closure of various portions of the radar network. Modernization of air defence forces became a hard argument. Because of changes in US strategic policy, which had come to accept the concept of mutual vulnerability to ICBM attack, the need to spend about $1 billion a year on air defence was challenged. In 1974, Secretary of Defense James Schlesinger stated the primary mission of air defence was to ensure the sovereignty of airspace during peacetime. There followed further reductions in the size and capability of the air defence system. By the late 1970s, the remaining components – some 300 interceptors, 100 radars and eight control centres – had become obsolescent and uneconomical to operate.

Over the years, the evolving threat caused NORAD to expand its mission to include tactical warning and assessment of possible air, missile, or space attacks on North America. The 1975 NORAD Agreement acknowledged these extensions of the command’s mission. Consequently, the 1981 NORAD Agreement changed the command’s name from the North American ‘Air’ Defense Command to the North American ‘Aerospace’ Defense Command.

canyon-1
NORAD Commanders have even turned up in the funny pages! Here the NORAD commander, who bore a striking resemblance to actual NORAD commander General Laurence Kuter, briefs Steve Canyon (Source: Author)

The 1980s brought essential improvements for the aerospace defence mission. Again, NORAD demonstrated adaptability to meet these changes. In 1979, the US Congress ordered the USAF to create an air defense master plan (ADMP). The ADMP, modified and upgraded, became the US administration’s outline for air defence modernisation and the foundation for NORAD cost-sharing discussions between Canada and the United States. The modernization accords signed in 1985 called for the replacement of the DEW Line radar system with an improved arctic radar line called the North Warning System (NWS); the deployment of Over-the-Horizon Backscatter radar; greater use of USAF Airborne Warning and Control System (AWACS) aircraft; and the assignment of newer USAF aircraft, specifically F-15s, F-16s, and CF-18s, to NORAD.

The late 1980s witnessed another expansion of the NORAD mission. On 29 September 1988, President Ronald Reagan signed legislation that involved the US Department of Defense, and specifically NORAD, in the campaign against drug trafficking. The command’s role in this mission was to detect and track aircraft transporting drugs and then report them to law enforcement.

On 11 September 2001, terrorists hijacked four passenger airliners, two of which obliterated the World Trade Center, in New York City, while another shattered part of the Pentagon. One of the four aircraft crashed in Pennsylvania before hitting its target, apparently either the US Capitol or the White House. The event made it clear that attacks on the homeland would not necessarily come only from across the poles and oceans which buffered the North American continent.

In the immediate aftermath of the 9/11 attacks, NORAD began Operation NOBLE EAGLE. The purpose of this still-ongoing air patrol mission was to defend the United States against terrorist aggression originating from either within or outside the nation’s air borders. NOBLE EAGLE missions were executed primarily by the USAF First Air Force, a NORAD unit under the command of the Continental NORAD Region (CONR), located at Tyndall AFB, in Florida. By June 2006, NORAD had responded to more than 2,100 potential airborne threats in the continental United States, Canada, and Alaska, as well as flying more than 42,000 sorties with the support of USAF AWACS and air-to-air refuelling aircraft.

NOBLE EAGLE’s response has become institutionalised into daily plans and NORAD exercises through which the command ensures its capability to respond rapidly to airborne threats. USAF units of NORAD have also assumed the mission of the integrated air defence of the National Capital Region, providing ongoing protection for Washington, D.C. Also, as required, NORAD forces have played a critical role in air defence support for National Special Security Events, such as air protection for the NASA shuttle launches, G8 summit meetings, and even Superbowl football events.

In recognition of the changing threat environment of the post-9/11 world, the United States Department of Defense stood up, in October 2002, US Northern Command (USNORTHCOM) as a joint service command to execute the mission of homeland defense across all domains. With NORAD already executing the air defense mission of North America, it was a logical step to co-locate the headquarters of NORAD and USNORTHCOM in Colorado Springs, Colorado, and to retain a dual-hatted commander relationship between NORAD and the new US joint command.

As NORAD looked to the future, past threats re-emerged. In 2014, Russian long-range aviation and maritime activity reached levels not seen since the Cold War: more sorties, supported by more tankers, and more sophisticated linkages between air and maritime intelligence collection than ever before. This activity underscored an aggressive Russian military enjoying new prosperity, proficiency, and ever improving capabilities that had NORAD focused on the Russian Bear once more. NORAD’s three operational regions in Alaska, Canada, and the Continental United States, routinely responded to incursions by Russian long-range aviation aircraft entering the North American Air Defense Identification Zone (ADIZ) or the Canadian Air Defense Identification Zone (CADIZ).

norad

As NORAD celebrates its 60th this weekend, we here at From Balloons to Drones send a very ‘Happy Anniversary’ to both America and Canada and to the Command itself for providing 60 plus years of aerospace warning, control, and defense to the Homeland. We know that you have the watch!

Dr Brian Laslie is a US Air Force Historian and currently the Deputy Command Historian at North American Aerospace Defense Command (NORAD) and United States Northern Command (USNORTHCOM). A 2001 graduate of The Citadel and a historian of air power studies, he received his Masters’ from Auburn University Montgomery in 2006 and his PhD from Kansas State University in 2013. He is the author of Architect of Air Power: General Laurence S. Kuter and the Birth of the US Air Force (2017) and The Air Force Way of War (2015). The latter book was selected for the Chief of Staff of the Air Force’s 2016 professional reading list and the 2017 RAF Chief of the Air Staff’s reading list. He can be found on Twitter at @BrianLaslie.

Header Image: A USAF F-22 Raptor of the 3rd Wing escorts a Russian Air Force Tu-95 Bear bomber near Nunivak Island, c. 2007. This was the first intercept of a Bear bomber for an F-22, which was alerted out of Joint Base Elmendorf-Richardson’s Combat Alert Center. (Source: US Department of Defense Images)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.