The Kh-101 and Syria: Maturing the Long-Range Precision-Strike Capabilities of Russia’s Aerospace Forces

The Kh-101 and Syria: Maturing the Long-Range Precision-Strike Capabilities of Russia’s Aerospace Forces

By Guy Plopsky

On September 26, 2017, modernised Tupolev Tu-95MS bombers of the Russian Aerospace Forces (VKS) Long-Range Aviation Command executed another strike with Kh-101 air-launched cruise missiles (ALCMs) against targets in Syria. According to Russia’s Defense Ministry, the missiles targeted ISIS and Jabhat al-Nusra ‘command posts, hardware and manpower concentration areas as well as ammunition depot.’[1] As with previous Russian ALCM strikes during the conflict, the heavily publicised September 2017 strike was intended to serve yet another reminder to the United States and NATO (as well as to other potential adversaries) of the Russian Aerospace Forces’ growing long-range precision-strike capabilities.

Lineup_of_Tu-95_at_Engels_Air_Base
 A line up of Tupolev Tu-95MS’ at Engels Air Base c. 2005 (Source: Wikimedia)

Designed by MKB Raduga, the Kh-101 is an advanced conventionally-armed cruise missile with low observable characteristics. The missile has a reported operational range of 4,500km (2,800 miles),[2] and features a guidance package that includes an inertial navigation system (INS), a terrain contour matching (TERCOM) system, a digital scene-matching area correlation (DSMAC) system, and a GPS/GLONASS receiver.[3] Compared with the older, conventionally-armed Kh-555 ALCM, the Kh-101 features significantly improved accuracy and a larger payload, making it suitable for use against hardened targets.[4] Drone footage of Kh-101 strikes from Syria, including the September 2017 strike, appears to attest to the missile’s high-accuracy (though the impact of only several missiles is shown).[5]

Russian bombers first utilised Kh-101s in combat on 17 November 2015, when Tu-160 bombers delivered the new cruise missiles against targets in Syria.[6] The strike, which also included Tu-95MS bombers armed with older Kh-555 ALCMs, marked the combat debut of both the Kh-555 and Kh-101 as well as the Tu-160 and Tu-95MS. Exactly one year later, on November 17, 2016, modernised Tu-95MS bombers executed their first strike with Kh-101 cruise missiles.[7] Before the integration of the Kh-555 and Kh-101 on the Tu-95MS and the Tu-160, and their subsequent employment in Syria, the two bombers were utilised solely for the nuclear deterrence role and did not participate in conventional conflicts.

The only Russian bomber currently in service with the Long-Range Aviation Command to have seen combat before Syria is the Tu-22M3, which flew sorties in the Soviet-Afghan War, the First Chechen War and, more recently, the 2008 Five Day War with Georgia. In all three conflicts, the Tu-22M3 was used exclusively for delivering unguided (or ‘dumb’) bombs – a mission which it continues to fulfil in Syria.[8] Given that bombers delivering unguided munitions are likely to find themselves within range of enemy fighter aircraft and surface-to-air missiles (SAMs), such an approach is only viable for low-intensity conflicts in which the adversary lacks credible air defences. Even then, multiple sorties against a single target may be required, and excessive collateral damage may be caused due to the poor accuracy of unguided bombs. Russia witnessed the difficulty of operating its bombers in a contested airspace first hand in August 2008, when one of its Tu-22M3s was shot down by a Georgian SAM during a strike sortie against a Georgian military base.[9]

The introduction of the Kh-555 and Kh-101, therefore, represents a crucial new capability for Russia’s Long-Range Aviation Command, one which allows it to partially compensate for the lack of a long-range very low observable platform. Unlike the USAF, which operates the B-2A stealth bomber, the VKS does not currently field a long-range very low observable platform capable of penetrating modern integrated air defence systems (IADS) and won’t be fielding one until at least the end of the next decade.[10] Hence, to avoid being targeted by adversary fighter aircraft and ground-based air defences in the event of a conflict, Russian bombers will need to launch long-range conventionally-armed ALCMs from stand-off ranges. This is particularly true for the cumbersome turboprop-powered Tu-95MS – the backbone of Russia’s Long-Range Aviation Command, – which, unlike the Tu-160 and Tu-22M3, is not capable of operating at supersonic speeds.

SU-30SM_escortant_un_Tu-160_qui_lance_un_missile_de_croisière
 A Tupolev Tu-160 launching an Kh-101 against a target in Syria, c. 20 November 2015 (Source: Wikimedia)

In this regard, the integration of the Kh-101 on the Tu-95MS dramatically expands the legacy bomber’s conventional strike capability, which until recently, was limited to dropping unguided bombs, transforming it into a formidable long-range precision-strike platform capable of accurately engaging hardened targets in heavily defended areas. At present, Russia is also outfitting its Tu-95MS bombers with SVP systems (developed by ZAO Gefest i T), which will enable Russian bomber crews to retarget their missiles before launch.[11] This will further enhance mission flexibility, allowing modernised Tu-95MS bombers to strike not only fixed but also relocatable targets. The ability of the Kh-101 to cover very large distances also reduces the Tu-95MS (and Tu-160’s) need to rely on in-flight refuelling for long distance missions. This, as several analysts have noted, makes the Kh-101 a particularly valuable asset given Russia’s relatively small fleet of aerial-refuelling tankers and limited overseas basing options.[12] A modernised Tu-95MS can carry up to eight Kh-101 ALCMs on four externally-mounted two-station pylons, while a Tu-160 can carry up to 12 such missiles on two internally-mounted six-station rotary launchers.

Considering that neither ISIS, nor the other factions with whom Russia is presently engaged in active combat with field capable air defenses, the Long-Range Aviation Command’s use of modernized Tu-95MS and Tu-160 bombers with Kh-101 ALCMs in Syria stems from Moscow’s desire to test both the reliability of its new air-launched weapon and its carrier platforms as well as the proficiency of Russian bomber crews under real combat conditions. As with the occasional use of conventionally-armed Kalibr sea-launched cruise missiles (SLCMs) in the Syrian conflict, the employment of Kh-101s is likewise intended to convey a strong signal to Russia’s potential adversaries and reflects Moscow’s desire to place greater emphasis on conventional deterrence. The need to expand precision-strike capabilities and increase reliance on conventional weapons for deterrence has been highlighted in Russia’s 2014 Military Doctrine and has been voiced by Russian military officials.[13] As Russian Defense Minister, Sergei Shoigu, noted in February 2017, though:

[t]he development of strategic nuclear forces remains an absolute priority for us […] the role of nuclear weapons in deterring a potential aggressor will decrease first of all due to development of high-precision weapons.’[14]

For the United States and NATO, Russia’s growing emphasis on conventional long-range precision-strike weapons such as the Kh-101 represents an increasingly pressing need to bolster missile defences.

Header Image: A Russian Tupolev Tu-160 ‘Blackjack’ in flight over Russia. (Source: Wikimedia)

[1] For a description, see: Russian Ministry of Defense, ‘Нанесение авиаударов Ту-95МС крылатыми ракетами Х-101 по объектам ИГИЛ в Сирии [Tu-95MS Airstrikes with Kh-101 Cruise Missiles Against ISIS Objects in Syria],’ YouTube video, 3:01. Posted September 2017. https://www.youtube.com/watch?v=NaI0QuvgKJA.

[2] ‘Министр обороны России генерал армии Сергей Шойгу провел военно-техническую конференцию [Russian Defense Minister Army General Sergei Shoigu held a Military-technical Conference],’ Russian Ministry of Defense, October 6, 2016

[3] Piotr Butowski, ‘All missiles great and small: Russia seeks out every niche,’ Jane’s International Defense Review, October 2014, pp. 48-9.

[4] Anton Lavrov, ‘Russia’s GLONASS Satellite Constellation,’ Moscow Defense Brief, 60:4 (2017).

[5] For example, see the video footage from September 2017 strike in fn1.

[6] David Cenciotti, ‘Russian MoD Video Shows Tu-160, Tu-95 and Tu-22 Bombers (with Su-27 Escort) Bomb ISIS in Syria,’ The Aviationist, November 17, 2015.

[7] ‘РФ впервые применила в Сирии новые ракетоносцы Ту-95МСМ с крылатыми ракетами Х-101 [Russian Federation Employed new Tu-95MSM Missile Carrier with Kh-101 Missiles in Syria for the First Time],’ TASS, November 17, 2016.

[8] For example, see: Russian Ministry of Defense, ‘Боевой вылет дальних бомбардировщиков Ту-22М3 с территории РФ по объектам террористов в Сирии [Combat Sortie of Long-range Tu-22M3 Bombers from the Territory of the Russian Federation Against Terrorist Targets in Syria],’ YouTube video, 2:10. Posted January 25, 2016. https://www.youtube.com/watch?v=55ni9KbpSv4.

[9] Anton Lavrov, ‘Russian Air Losses in the Five-Day War Against Georgia,’ in Ruslan Pskov (ed.), The Tanks of August (Moscow: Center for Analysis of Strategies and Technologies, 2010), p. 100.

[10] ‘PAK DA: Russian Defense Ministry Reveals When New Bomber Will Fly,’ Sputnik, April 27, 2017.

[11] Dave Majumdar, ‘One of Russia’s Most Deadly Bombers Now Has a Scary New Capability,’ The National Interest, July 5, 2017.

[12] For example, see: James Bosbotinis, ‘Russian Long-Range Aviation and Conventional Strategic Strike,’ Defense IQ, March 5, 2015.

[13] For an English translation of Russia’s 2014 Military Doctrine see https://www.offiziere.ch/wp-content/uploads-001/2015/08/Russia-s-2014-Military-Doctrine.pdf.

[14] ‘Russian Shield: Nukes Priority, but High-Precision Weapons to Play Greater Role,’ Sputnik, February 21, 2017.

Unseating the Lancer: North Korean Challenges in Intercepting a B-1B

Unseating the Lancer: North Korean Challenges in Intercepting a B-1B

By Andy Zhao and Justin Pyke

Introduction

When North Korea threatened to shoot down a B-1B Lancer in response to a September 23rd flight operating off its east coast, a reasonable amount of discussion centred around if the North Koreans have the capability to carry out their threat.[1] This article outlines some of the challenges faced by North Korea if it attempts to shoot down a B-1B operating off the coast in international airspace. Any scenario where United States (US) or South Korean aircraft attempt to penetrate the airspace of North Korea is outside the scope of this discussion.

North Korean Equipment

DN-SN-83-06768
An East German SA-2 ‘Guideline’ similar to that currently operated by the KPAF. (Source: Wikimedia)

North Korea’s primary air defence is provided by the Korean People’s Army Air Force (KPAF). It operates a wide assortment of Soviet/Russian and Chinese equipment, consisting of everything from Chinese J-5s (a MiG-17 ‘Fresco’ derived aircraft) to the Russian MiG-29 9.13s ‘Fulcrum.’ Due to the secretive nature of the KPAF, it is hard to determine the true readiness of these aircraft in inventory. Many KPAF aircraft originate from the 1960s and are likely reaching their maximum airframe flight hours and/or are suffering from a lack of spare parts as indicated by the decreasing numbers of operational aircraft visible on airfields. This appears to be a major concern of the KPAF as in 2013 they attempted to import equipment and spare parts from Cuba. Numerous other problems plague the KPAF, from poor pilot training to the possibility of a largely expired inventory of air-to-air (A2A) missiles (i.e. R-60MKs (AA-8 ‘Aphid’) and R-27Rs (AA-10 ‘Alamo’) were received in 1987).

The KPAF also operates larger ground-based air defence platforms, such as:

North Korea also possesses a formidable array of short-range air defence systems. These are not relevant to the discussion as their range is too limited to pose a threat to a B-1B operating in international airspace.

Understanding the Kill Chain[4]

The process required to intercept an aircraft can be broken down into various steps:

  1. Detect and identify the target;
  2. Acquire the target with fire control;
  3. Identify range and the target direction/angles, paint/illuminate (literally lit up with radar waves) the target for the missile;
  4. Launch the missile;
  5. Guide the missile onto the target;
  6. The missile detonates/impacts near the target;
  7. Observe the target, repeat chain if necessary.

For the target to be intercepted, every aspect of the chain must be followed and must be successful. It is a delicate process, and if any step is interrupted, the target is unlikely to be successfully engaged. The kill chain will be similar regardless of the method used to conduct the interception.

Intercepting the B-1B using S-200 Angara (SA-5 ‘Gammon’) for Interception

S-200 Battery
North Korean S-200 Battery (Onggodok) located on the East Coast [39°19’03” N , 127°20’04” E] – Dated May 25, 2015

We will now take a closer look at the possible engagement of a B-1B by an S-200 surface-to-air missile (SAM) battery. This was the only SAM system likely to be in range of the B-1B flight on September 23rd, though even that is in doubt. For the sake of argument, we will assume a B-1B and its fighter escort stray into this outer layer of North Korea’s air defence. Firing an S-200 would be North Korea’s best shot at a successful engagement against a B-1B, as fighter interception would take more time and have to contend with a US and/or South Korean fighter escort of vastly superior quality. An S-200 SAM battery consists of several components:

An S-200 SAM battery consists of several components:

  • 5N62 (‘Square Pair’) Engagement Radar;
  • SM-106 5P73 Launchers;
  • V-601P 5V28 (S-200) Surface-to-Air Missile.

However, this is not an exhaustive list as the S-200 can also draw on higher assets, such as early warning/intercept radars (ex. P-14 ‘Tall King’ or ST-68 ‘Tin Shield’), or share information along with an integrated air defence network. It must be noted that the S-200 was developed in the 1950s through 1960s with the intention of engaging high-altitude bombers like the B-52 Stratofortress. The heavy missile is not ideal for engaging smaller and more manoeuvrable targets, particularly near its maximum range. The S-200 battery requires a constant feed of range and azimuth data to guide the missile onto the target and uses the 5N62 Engagement Radar to accomplish this task. Once the B-1B has been painted, the SAM battery can attempt to engage it.[5]

US aircraft are equipped with radar warning receivers (RWR), such as the ALQ-161A on the B-1B, that can detect radar emissions and alert the pilot. The pilot can then perform various actions (‘defending’) to attempt to break the lock. The most obvious of these is taking evasive action, but countermeasures such as chaff (small pieces of plastic and fibre with a conductive coating), jamming (providing false signals at the specific frequency used by the radar), and towed decoys (mimics the appearance of the parent aircraft) can also be employed.

Additionally, the S-200 has a poor record of target interceptions. On March 24th, 1986, Libya fired at least four S-200 missiles against two F-14 Tomcats when they were 40km off the Libyan coast. All of them missed their targets, and the engagement radar was destroyed by an AGM-88A High-Speed Anti-Radiation Missile, rendering the S-200 battery inoperable. In March 2017, Israeli aircraft launched airstrikes in Syria and were targeted by an S-200 battery, escaping unscathed.[6] In fact, the authors were unable to find a single example of a successful S-200 interception in a combat environment. In summary, the chance of an S-200 successfully downing a B-1B or its fighter escort is very low. The system was simply never designed to engage these types of aircraft effectively.

On September 23rd, the kill chain did not proceed past the first stage. According to Yonhap, the South Korean National Intelligence Service claimed that ‘North Korea did not take any immediate action in response to US’s strategic bombers’ flight.’ A member of the US intelligence community (IC) reached out to the authors and stated that the North Koreans picked up the flight on their early warning radars, but not engagement radars and that seemingly no alerts were sent to any airfields or SAM batteries. The source was unsure of the reason why the North Koreans did not send out alerts, and suggested possibilities varying from confusion/incompetence to a willful decision not to notify air defence assets. Ultimately, the North Koreans were either unable to acquire the B-1B flight with their engagement radars, or decided not to escalate the situation further by doing so.

As an aside, it is worth noting that the eastern S-200 battery’s (Onggodok) engagement radar was no longer present on the newest Google Earth imagery (October 19th, 2015), and was still missing as of May 5th, 2017. The US IC source stated it was likely just routine relocation training, and that there is another S-200 battery located on the east coast. Unfortunately, the authors could not confirm if the new site has the engagement radar, or if the battery was even operational during the September 23rd flight.

Intercepting the B1B using MiG-29 9.13s ‘Fulcrum’ for Interception

KPAF Mig-29
 A KPAF MiG-29 unit being visited by Kim Jong-Un. (Source: Unknown)

The same Yonhap article notes that North Korea has moved additional aircraft to the coast, and CNN claims that they are MiG-29s. A ‘best case’ example of MiG-29 9.13s equipped with R-60MKs and R-27Rs will be used as this is the most capable A2A combat system in the KPAF inventory. North Korea only has around six of these MiG-29 models.[7] If the MiG-29s are fully combat loaded, they only have a 180km combat radius. This can be extended to ~276km with the use of a drop tank. Additional drop tanks can be fitted, but the MiG-29 9.13s would have to forgo the R-27R medium-range A2A missiles that would be critical to a successful interception.[8] Given the locations of North Korean airfields in the eastern part of the country, the MiG-29s would have only slightly more reach than the S-200 battery at best, and would just have one brief shot at the interception before needing to return to base. Additionally, the intercepting MiG-29s would likely not have time to engage with the US and/or South Korean fighter escort. For the sake of argument, the assumption will again be made that a B-1B flight comes within range of fighter interception.

Using aircraft to intercept the B-1B would follow the same general kill chain as mentioned for the S-200. First, the B-1B would need to be detected. This could be done with early warning radar before scrambling the MiG-29s to intercept. KPAF fighters could also be assigned to patrol the airspace around-the-clock, with ground radar assisting the aircraft in attempting to detect the B-1B. The latter is an unlikely option given the limited range of the MiG-29 and is demanding on the aircraft as well as the pilots. There may also be a significant delay between detection of the B-1B and the scrambling of aircraft. The MiG-29s would likely be detected by US or South Korean early warning assets in the region, which would communicate an advanced warning to the B-1B. It could use this time to leave the area, putting an end to the interception. However, if the B-1B is identified and does not leave the area, the MiG-29s still need to acquire it visually to engage with infrared missiles (R-60MKs) or on the radar to engage with radar-guided missiles (R-27Rs). Once again, countermeasures could be deployed, and evasive manoeuvres could be taken to defeat the missiles.

landscape-1504206649-36755613416-05fc74a29d-k
US Marine Corps F-35B Lightning II stealth fighters assigned to the Marine Corps Air Station Iwakuni, Japan, fly alongside 2 US Air Force B-1B Lancers assigned to the 37th Expeditionary Bomb Squadron, deployed from Ellsworth Air Force Base, South Dakota, over waters near Kyushu, Japan, Aug. 30, 2017, and 2 Koku Jieitai (Japan Air Self-Defense Force) F-15J fighters. Source: US Pacific Command)

If fighters are escorting the B-1B, as was the case on September 23rd, they could intercept the MiG-29s. This would put the escorting fighters at risk. However, it must be made clear that even if the interception were conducted by the best KPAF fighters available (MiG-29 9.13s) using the best KPAF A2A missiles available (R-60MKs and R-27Rs), they would still be at a large disadvantage against US and South Korean aircraft. The countermeasures and missiles are both inferior at the least. For example, the R-27R relies on semi-active guidance, meaning the parent aircraft must keep its nose pointed at the target and maintain a lock with the onboard radar until impact.[9] By contrast, the AIM-120 AMRAAM used by US and South Korean fighters can be fired at an extended range, and course corrected using data from the parent aircraft without the need to keep the MiG-29 painted with radar. The pilot of the MiG-29 would not be alerted by their RWR that a missile was inbound until the AIM-120 reaches its terminal phase, providing little warning of its approach. This gives the US, or South Korean pilots added tactical flexibility over their North Korean counterparts. Any lesser aircraft in the KPAF inventory, such as MiG-23MLs ‘Flogger,’ would be even further disadvantaged.

Conclusion

The possibility of a successful interception of a B-1B operating in international airspace off the coast of North Korea cannot be disregarded entirely. However, the limited reach of North Korea’s air defence, the advanced age and limited capabilities of the systems theoretically in range, and the array of defensive options available to the air forces of the US and South Korea would pose a nearly insurmountable challenge. The high chance of failure (and by extension embarrassment), the possibility of instigating a regime-ending war, and negligible benefits of successfully downing a B-1B leads to the conclusion that North Korea is unlikely to carry out this threat. This is particularly true when North Korea has much more reliable and effective means of provocation, such as continued ballistic missile and nuclear tests.

Header Image: A B-1 Lancer performing a fly-by during a firepower demonstration, c. 2004. (Source: Wikimedia)

[1] Special thanks to Samuel Stadem, air power enthusiast and current chemistry graduate student at the University of Minnesota Duluth, for providing assistance with the finer points of modern military aviation.

[2] Tony Cullen and Christopher Foss (ed.), Jane’s Land-based Air Defence, 5th ed. (Surrey: Jane’s Information Group, 1992), pp. 261-62, 264.

[3] Richard D. Fisher Jr., ‘North Korean KN-06 Test Confirms Similarity to Chinese and Russian Fourth-Generation SAMs,’ IHS Jane’s Defence Weekly, 53:22 (2016).

[4] Robert H.M. Macfadzean, Surface-Based Air Defense System Analysis (Norwood: Artech House, 1992), pp. 39-63.

[5] Cullen and Foss, Jane’s Land-based Air Defence, pp. 263-64.

[6] The Syrians claimed that they shot down one aircraft and damaged another. However, no evidence has been presented and the burden of proof lies with Syria.

[7] Yefim Gordon and Dmitriy Komissarov, Soviet and Russian Military Aircraft in Asia (Manchester: Hikoki Publications, 2014), pp. 265-89.

[8] Yefim Gordon, Mikoyan MiG-29, trans. Dmitriy Komissarov (Hinckley: Midland Publishing, 2006), pp. 341, 377. The drop tank combat radius was extrapolated from the given range and combat radius values. The internal fuel capacity gives a 900km range and 180km combat radius, providing a ratio of 5. The given range on one drop tank is 1,380km. Dividing this by 5 results in a 276km combat radius.

[9] Gordon, Mikoyan MiG-29, pp. 364-65, 487-88.

Research Note – Wither Air Power Studies?

Research Note – Wither Air Power Studies?

By Dr Ross Mahoney

I started writing this post several months ago, but for various reasons, it lay dormant until a recent Twitter exchange began with Brian Laslie. Brian suggested that Mark Clodfelter’s The Limits of Air Power was the ‘foundation of modern air power studies.’ This immediately got my attention, and I queried this, which led to a fruitful exchange of views on the subject between several participants.

The original source for this post came from comments I provided to the Second Sir James Rowland Seminar at the Australian Defence Force Academy, which is an initiative between UNSW Canberra and the Royal Australian Air Force’s Air Power Development Centre. Another source was a post by Nicholas Sarantakes with an update on the ongoing debate on the ‘decline’ of military history in academia. These sources originally got me thinking about the state of air power studies in the English-speaking worlds and the recent Twitter exchange brought that process to the fore again.

In my reply to Brian, I made the argument that in the UK, the mantle of ‘father’ of air power studies, in my opinion, belongs to Air Vice-Marshal Tony Mason who was the RAF’s first Director of Defence Studies (DDefS). To my mind, Tony generated the space for the subject both within the RAF and with external partners. There are, of course, other names we could put into this mix including Dr Noble Frankland, J.M. Spaight, Professor Phil Sabin and Professor Richard Overy, but I am unsure whether these writers ever created enough mass for the field to evolve. For example, while Overy wrote on air power issues early in his career, he then moved onto other subjects, though has more recently returned to the field. Conversely, through the creation of the DDefS post, the RAF has provided a platform for the development of air power studies in the UK. The position still exists, and there have been several notable holders of the post including Dr Peter Gray, who is now Senior Research Fellow in Air Power Studies at the University of Birmingham, and the current Chief of the Defence Staff, Air Chief Marshal Sir Stu Peach. Indeed, since moving to the University of Birmingham, Grey has helped generate a mass of air power scholars in the UK and beyond.

Despite my views on the origins of air power studies in the UK, some important issues came out of the discussion on Twitter. One is that while we might identify Clodfelter or Mason as defining the field in the US and UK respectively, this does not answer the question of whether there is someone who crosses national boundaries. One name that did spring to mind was John Andreas Olsen. However, as Travis Hallen, one of the editors over at The Central Blue, reflected, Olsen has been more productive in bringing together people to produce worthwhile edited volumes. Furthermore, as David Benson, a Professor at the USAF School of Advanced Air and Space Power Studies, noted these writers may have defined the field but should they define it today? David provided an interesting reflection on this issue in a number of Tweets, and while I do not agree with all of his points, his views on how we define the field are critical.

Knowledge is not static and as such how we define the field of air power studies should not be fixed either. Indeed, David suggested that this might be the case with it being argued that the study of air power might not be keeping up with changes in the field of social science. Here lies one problem as this essentially suggests a social science view of the study of air power and raises the question of where the subject fits as a discipline? Is the study of air power a social science or is it interdisciplinary? Moreover, are we looking at air power from the perspective of how it is defined in doctrine or do we need to take a broader view that encompasses a wider remit and brings in other fields including history? I would suggest the latter.

Take, for example, myself, I am an air power specialist, but first and foremost I am a historian, though I admittedly make use of interdisciplinary methodologies. My views on air power, even when looking forward, is essentially historical in outlook. I believe that we cannot understand the future without first considering past challenges, but does this lead to a ‘classical’ analysis of air power? I do not think so. I would argue that my broader perspective allows me, hopefully, to push the field forward. In this, I agree with David’s view that is up to those of us currently working in the field to ‘push it from its origins into modernity as a scholarly field’. Another advantage of broadening the scope of air power studies is that by encompassing a more comprehensive approach that includes aspects such as the history of air warfare and the social and cultural analysis of the armed forces, then we can further understand how we develop the knowledge that defines the field. We should also add other disciplines into this comprehensive mix including ethics and law.

Despite much of this rambling and reflection the crux of the issue remains how we develop air power studies as a scholarly field? What are the mechanisms that can be used to develop and disseminate knowledge? For me, one of the key issues here is the insular character of the field. As John Ferris reflected in 1998, those studying air power are either:

[t]he children of airmen, have been military personnel themselves, and have been employed at a historical office or service school in Canada, Germany, the United Kingdom, or the United States.[1]

My reading of the situation is that not much has changed and broadly speaking those of us writing on air power are a homogenous group who come from similar backgrounds. Again, using myself as an example, I am the child of a soldier, my PhD supervisor was a retired one-star officer, and I work for an institution devoted to preserving the history of an air force. Therefore, I accept there will always be a degree of subjectivity in my work. As such, how do we break free from that mould to further develop our field?

Part of the answer, of course, lies in establishing networks beyond our traditional insular boundaries. How do we, for example, encourage the study of air power beyond military academies? How do we work with colleagues who might ask difficult questions that do not fit our subjective paradigms? We need to be willing to accept these challenges and be prepared to discuss these issues freely and openly rather than dismissing them.

Further to a conceptual and personal willingness to engage, which I suspect most of us are happy to do, there is the question of the mechanism for discussion. While online platforms, such as From Balloons to Drones, The Central Blue, The Strategy Bridge and War on the Rocks are useful for generating discussion, are there other ways of pushing and developing knowledge? Has the time come, for example, to establish an academic journal devoted to air power that moves us beyond the service sponsored journals?

I have no silver bullet to these questions and what I have written here is part of an ongoing reflection on the subject, and I welcome any further thoughts people have. Nevertheless, I do think the time has come for us to reflect on the field and start ‘push it from its origins’.

Header Image: An RAF Atlas (A400-M) at night during Operation Mobility Guardian. (Source: MoD Defence Imagery)

[1] John R. Ferris, ‘Review Article – The Air Force Brats’ View of History: Recent Writing and the Royal Air Force, 1918–1960,’ The International History Review, 20:1 (1998), p. 119.

Research Note – The Royal Cyber Force

Research Note – The Royal Cyber Force

By Luke

President Trump’s recent move to elevate the United States Cyber Command (CYBERCOM) to full ‘combatant’ status has given us in the United Kingdom an opportunity to refresh and revitalise our own cyber fielded forces. In the official statement launching CYBERCOM, Trump said:

[this] elevation will also help streamline command and control of time-sensitive cyberspace operations by consolidating them under a single commander.

At the moment UK cyber forces are not organised in a manner that enables us similar streamlined command and control and effective deployment of our cyber assets. Not helping the discussion is the lack of transparency around UK cyber capabilities. Former Defence Secretary Phillip Hammond made international headlines in 2013 by announcing that the UK was developing an offensive cyber capability. Other than this declaration, there is minimal public scrutiny or even awareness of our capabilities. The fact that this announcement was so note-worthy also highlights the dearth of public discussion on cyber warfare.

55771864

The UK Ministry of Defence (MoD) has released a Joint Doctrine Publication known as the Cyber Primer, which provides an excellent high-level overview of cyber opportunities and vulnerabilities in the military context but no real substance as to the order of battle of UK forces. With the recognition of cyber as a separate but underpinning domain of warfare as shown in this excellent article, perhaps it is time to re-organise the UK’s forces in a similar way to our US allies. Taking a step further to create a ‘purple’ force of offensive and defensive specialists along with a re- invigorated electronic warfare cadre would demonstrate real innovation in an arena where competition is fierce, rules are unclear and technology advances at a breath taking pace.

Why do we need a separate cyber force? Modern platforms such as Typhoon, A400M, AJAX and the Queen Elizabeth Class aircraft carriers are highly dependent on the cyber domain to fulfil their basic functionalities as well as gain a technological edge on our adversaries. Where the air force provides control of the air and the navy provides control of the sea, so too we must have ‘cyber control’ delivered by a force of experts and specialists. The Cyber Primer states that we must be able to operate as freely in this domain as we do in the other physical ones; therefore we need to create a separate branch of the armed forces with the innate “cyber-mindedness” to exploit this new battlespace. For someone with Royal Air Force leadership experience, this feels like 1916-18 all over again. Back then we had discovered another new realm of warfare, the air, and argument was fierce as to who would be responsible for aerial battle.

The UK led the world in the creation of an independent air arm. Now, 100 years on, we are presented with another opportunity to lead and innovate.

What would an integrated Cyber Force look like? Currently, the bulk of UK Cyber capabilities fall under Joint Force Command, similar to how US cyber forces used to fall under Strategic Command. There are also discrete units within each of the single services, such as No. 591 Signals Unit, the Fleet Electronic Warfare Group and 14 Signals Regiment. We could break out these units as well as the Joint CEMA Group, the operators, and Information Systems and Services, responsible for enabling those capabilities, into a separate ‘Royal Cyber Force’ commanded by a 3 or 4 Star officer.

The challenges of this radical change would be significant. Trades with these specialisations are under manned and in high demand from civilian industry. Institutional inertia and the ‘old guard’ would be hard to win over. However, there exists a motivated and committed cadre of personnel with the UK MoD who, given this challenge, could and would rise to the occasion. In conclusion, our allies and adversaries are innovating at pace in the cyber domain. In order to keep up, the UK must make a significant change to the way it conducts cyber operations. A Royal Cyber Force would be a substantial first step.

This post first appeared at the Wavell Room.

Luke has Air Force leadership experience, in the UK and on Operations. He also has experience working in the Cyber environment at the joint level.

Air War Books – Dr Michael Molkentin

Air War Books – Dr Michael Molkentin

By Dr Michael Molkentin

Editorial Note: In the third instalment of ‘Air War Books,’ Dr Michael Molkentin discusses the ten books that have influenced and shaped his writing as an air power historian. If you are interested in contributing to this series or From Balloons to Drones more generally, find out how here.

After I wrote to Dr Ross Mahoney enthusiastically agreeing with several of his choices (always a bad idea!) and suggesting a few others, he promptly invited me to contribute my own ‘Top 10’. I had been saying I would write something for Balloons to Drones for a while and so now he had me cornered. What follows is a list of titles that have had a significant impact on the way I research and write aviation and air power history. As these titles clearly indicate, my area of interest primarily concerns the pre-Second World War period (military and civil) and the people and ideas, rather than the technology, of aviation. 

Denis Winter, The First of the Few: Fighter Pilots of the First World War (London: Allen Lane, 1982). Denis, unfortunately, went on to write a scandalously bad book on Haig that damaged his reputation as a historian. But before that, he produced a couple of genuinely very good ‘face of battle’ type histories of British servicemen in the Great War (the other being Death’s Men). I found The First of the Few in my high school library and later used it as a model for writing my honours thesis on Australian airmen in the Great War. It is a bit dated, relies almost entirely on published accounts and some of Winter’s statistics do not stand up to scrutiny. But it is what got me interested in the subject and stands as the best personal experience study of British airmen in the Great War. I had the pleasure of meeting Denis in Canberra in 2004. He was a kind and gracious man and, when I showed him my work, he encouraged me to keep writing.

Richard P. Hallion, Taking Flight: Inventing the Aerial Age, from Antiquity Through the First World War (New York: Oxford University Press, 2003). I might have included any of Richard’s numerous books on air power (Strike from the Sky, his history of ground attack is a close second) but this has probably been most useful and influential in my work. It is a model of highly readable, yet meticulously researched history. It is international in scope and provides some valuable analysis of the complex ways in which aviation emerged as a practical reality, in various parts of the world, before 1914.

S.F. Wise, The Official History of the Royal Canadian Air Force, Volume 1: Canadian Airmen and the First World War (Toronto: University of Toronto Press, 1980). Wise’s first volume of the Royal Canadian Air Force’s official history is, in my view, the best single volume history of British air power in the Great War. The ubiquity of Canadians in the British flying services (over 20,000 served) means that Wise needed to cover all aspects of air power in the conflict – maritime aviation, strategic bombing and home defence, army cooperation and even some brief surveys of the RFC/RAF in secondary theatres. While some of his conclusions about the conduct of the war on the Western Front have dated, in the main his conclusions stand and are thoroughly grounded in archival sources. My PhD thesis and the book that followed it used Wise’s book as a model to examine Australia’s part in the air war from political, strategic, operational and tactical perspectives.

E.R. Hooton, War over the Trenches: Air Power and the Western Front Campaigns 1916-1918 (Hersham: Midland Publishing, 2010). I have mixed feelings about his book. On the one hand, it makes a significant contribution to our understanding of air power on the Western Front by conducting a multi-force (French, German and British) analysis at the operational level- something nobody had previously attempted. Whereas previous studies of the subject have focused on the tactical level, Hooton uses a mass of statistical data (sorties flown, ordnance expended, losses, serviceability, etc.) to provide a much broader picture of how air power influenced the conflict and how its use evolved between 1916 and 1918. Unfortunately, the book is poorly written and (in the first edition at least) so badly type set that some of the data tables are almost unreadable. It is such an important contribution to the field: I only hope the publisher has the good sense to reissue a revised edition or that an aspiring PhD candidate will take his approach further.

John Buckley, Air Power in the Age of Total War (London: UCL Press, 1999). I am going to go with Ross here and say that, among the many air power surveys out there, this one is the best. It is clear, concise and, essentially for a book like this, gets the balance right between ideas and details. Giving his narrative cohesion is a compelling, convincing and delightfully ironic thesis: that total war first enabled air power but then, following the onset of the nuclear age, limited its functions.

Philip S. Meilinger, The Paths of Heaven: The Evolution of Airpower Theory (Maxwell AFB, AL: Air University Press, 1977). Besides Buckley, the other book I recommend students starting out in the field is Meilinger’s survey of air power thinking. It is a straightforward, textbook approach devoting a chapter to each of the twentieth century’s most influential air power theorists. It is not exactly a page turner but is absolutely essential reading for students of air power and a useful reference work to have within arm’s reach when writing.

Malcolm Cooper, The Birth of Independent Air Power: British Air Policy in the First World War (London: Allen and Unwin, 1986). Malcolm was one of the first scholars to use the Air Ministry’s declassified files after their transfer to the British National Archives (then the PRO) during his PhD candidature during the 1970s. Whereas accounts of British air power’s early days had, until then, been overwhelmingly focused at the tactical level (individual pilots, squadrons, Biggles, etc.), The Birth of Independent Air Power focuses on the topic at the political and policy-making levels. I do not agree with Malcolm’s conclusion that the Army’s use of air power was wasteful and unimaginative (neither does James Pugh in his excellent new book which provides a good update on aspects of Cooper) but much of what he says was vital in adding political context to the operational history of British air power from 1914 to 1918.

Alfred Gollin, The Impact of Air Power on the British People and their Government (Stanford, CA: Stanford University Press, 1989). I would give this to students not even interested in air power as a somewhat rare example of an academic historian writing in a clear, engaging style. Honestly, it reads like a novel but still manages to seamlessly incorporate excellent analysis. Gollin was an enormously talented historian and a shining example to those of us who actually want our work to have a readership beyond the academy and services.

John A. Lynn, Battle: A History of Combat and Culture (Boulder, CO: Westview Press, 2003). Lynn does not really deal with aviation or air power explicitly, but his approach to explaining warfare through the prism of culture is both novel and enlightening. In case study chapters ranging from Ancient Greek warfare to modern Islamic terrorism, Lynn demonstrates convincingly that we cannot properly understand military operations without considering the cultures that conceive and wage them.

Ian Mackersey, Smithy: The Life of Sir Charles Kingsford Smith (London: Little Brown, 1998). This is not only the best of the many biographies of Kingsford Smith; it is the best example of historical biography I have come across. Through impressively dogged detective work, Mackersey managed to track down a number of people who had known Kingsford Smith before his death six decades earlier. From them, he got oral history and private papers that shed light on hitherto unknown or mythologised aspects of his subject’s life. Ian wrote a page turner too: it is engaging, absorbing history. Ian, who sadly died a couple of years ago, was also a gentleman. When I was writing my book on the 1928 trans-Pacific flight, he generously shared manuscript material he had gathered from private collections in the US when researching his book.

Header Image: An RE8 of No 69 (later No 3) Squadron, Australian Flying Corps preparing to set out on a night bombing operation from Savy near Arras, 22 October 1917. (Source: © IWM (E(AUS) 1178))

Book Review – Air Power in UN Operations: Wings for Peace

Book Review – Air Power in UN Operations: Wings for Peace

By Dr Ross Mahoney

A. Walter Dorn (ed.), Air Power in UN Operations: Wings for Peace. Farnham: Ashgate, 2014. Figures. Tables. Notes. Index. Pbk. £28. pp. xxxv + 350.

air-power-in-un-operations_cover_dorn_300x448_65k

The use of air power as a tool by state actors is a regular theme examined by historians and policy specialists alike. However, the use of air power by non-state actors, in particular, intergovernmental organisations, is a different matter, though depending on one’s perspective, the United Nations (UN) – the subject of this volume – can be viewed as either a state or non-state actor. In this volume, A. Walter Dorn, Professor of Defence Studies at the Royal Military College of Canada, has brought together an impressive line-up of scholars and practitioners to consider how the UN has used both kinetic and non-kinetic air power as a tool for peacekeeping operations. Indeed, the narrative of UN peacekeeping operations generates images of soldiers in blue helmets on the ground. However, as this book ably demonstrates, air power has been a vital element of UN operations since the creation of its first ‘Air Force’ in 1960.

First Phase Digital
A partial view of Luluabourg airport, showing some of the Swedish Saab J-29 jet planes which were placed at the disposition of the UN Force in the Congo (ONUC), c. 1961. Called ‘flying barrels’, the jets were manned by members of the Swedish Air Force, numbering some 40 pilots and maintenance officers.(Source: United Nations)

The book examines the use of air power by the UN since 1960 through to Operation UNIFIED PROTECTOR – the air operations over Libya by NATO in 2011, which enforced UN Security Council Resolutions 1970 and 1973. The book consists of 17 chapters split over six thematic areas: The UN’s First ‘Air Force’; Airlift; Aerial Surveillance; No-Fly Zones; Combat and evolving capabilities. The latter aspect looks at some of the challenges for the UN in the future. Indeed, by splitting the analysis into the themes mentioned above, Dorn et al. illustrate that UN air operations cover the broad spectrum of roles readily identifiable in modern air power doctrine: control of the air; attack; situational awareness and air mobility. It also ably illustrates the challenges and potential contradictions of ‘Ends’, ‘Ways’ and ‘Means’ in UN strategy and peacekeeping operations. As Dorn notes in his preface, ‘While peacekeeping is meant to de-escalate violence, it is sometimes necessary to use force to stop force.’ (p. xxvi). As such, to meet the ends desired by the UN – the cessation of violence between, states, groups or organisations – it is often necessary to utilise air power’s various capabilities to moderate and influence the behaviour of the parties involved. Therefore, air power offers a toolkit to try to support the enforcement of UN Resolutions. Indeed, as Robert C. Owen’s chapter on Operation DELIBERATE FORCE in 1995 (pp. 231-40) and Christian Anrig’s piece of Libya in 2011 (pp. 255-82) illustrate air power can be a useful tool in shaping behaviour. DELIBERATE FORCE ensured that the Bosnian Serbs complied with UN Resolutions and put the UN in a position to shape the Dayton Accords (p. 236). However, this, in itself, was only possible due to the technological changes, such as the emergence of Precision Guided Munitions, which allowed the multinational air forces involved in DELIBERATE FORCE to conduct a humanitarian war. Had the air forces involved been equipped with ‘dumb’ weapons then the diplomatic fallout from collateral damage would have, potentially, hindered the ends sought by the UN. Similarly, in 2011, air power offered the UN the means to apply military force to level ‘the playing field’ (p. 280) in defence of civilians during the Libyan Civil War. Furthermore, unlike in DELIBERATE FORCE, air power – as the means of applying military force – was the essential tool for both the UN and NATO because UN Security Council Resolution 1973 forbade the use of occupying forces in Libya. However, it should also be remembered that air power was not used in isolation and that it worked with naval forces and special operations teams to achieve the ends desired by the UN.

Importantly, this volume does not avoid discussing some of the challenges inherent in the application of air power by the UN. As with any forces it deploys, the UN is reliant on the support of its member nations to provide the ways and means to achieve its ends. At the time of publication (2014), the UN deployed around 200 to 300 aircraft to provide air support for peacekeeping missions (p. 283). Not only is relying on member states to willingly supply forces a risky strategy – but states tend only to support those missions viewed to be in its own interest – it is also costly as the UN pays for the use of lease of both military and civilian aviation assets to achieve its ends. Some of these challenges are considered in the final section of the book on ‘Evolving Capabilities’ (pp. 283-316).

drone in Bunia.jpeg
A United Nations unmanned aerial vehicle (UAV) at Bunia airport in the Democratic Republic of Congo. UAVs are used for surveillance purposes by the United Nations Organization Stabilization Mission in the Democratic Republic of the Congo. (Source: United Nations)

This fascinating book highlights the many challenges concerning the application of air power in the context of peacekeeping operations. It considers both some of the practical challenges of deploying air power into the theatre to the many diplomatic considerations that affect the use of air power as a policy tool for the UN. Clearly, air power is not always the answer; however, as part of a toolbox of political, diplomatic, economic and military means, air power can provide the ways to achieve the ends sought by the UN if applied correctly. Finally, it is worth reflecting that many of the lessons found in this book should not be considered as unique to the UN, but can also be applied to peace support operations undertaken by individual sovereign nations. Indeed, David Neil’s chapter of Unmanned Aerial Vehicles (pp. 147-64) highlights some of the regulatory challenges concerning their use, which are just as important to national air forces as they are for the UN.

This post first appeared at Thoughts on Military History.

Header Image: A Mil Mi-8 helicopter of the United Nations Mission in South Sudan in Juba, c. 2013. (Source: United Nations)

From Balloons to Drones – One Year On

From Balloons to Drones – One Year On

By Dr Ross Mahoney

It has just been over a year since From Balloons to Drones was established as a platform for the discussion of air power broadly defined. Since our first post, we have published 40 pieces on a variety of subjects ranging from the historical to the contemporary. We have had articles dealing with issues related to the efficacy of air power, the topic of military education and the future of air power. We have also recently started a new series, Air War Books, that explores the books that have influenced air power writers. Contributors have come from around the globe including contributions from Finland and Australia. I am grateful to those who have contributed to the site. Without them, there would not be much here. However, most of all, we have received regular traffic from people interested in reading what we have written, and for that we are grateful.

Just as a bit of fun, here are the top five posts by views:

  1. ‘Changing the USAF’s Aerial ‘Kill’ Criteria’ by Major Tyson Wetzel;
  2. ‘Arrows from the Ground – Or how an incident on 17 March 2017 may change the relationship between ground and air forces’ by Dr Jacob Stoil and Lieutenant Colonel Kyle C. Burley;
  3. ‘Commentary – The RAF and the F-117’ by Dr Ross Mahoney;
  4. ‘Supporting the Secret War: T-28s over Laos, 1964-1973 – Part 1: Training’ by Jeff Schultz;
  5. ‘‘Integrating’ the Italian Air Force after the Armistice’ by Dr Ross Mahoney.

These are just a selection of the articles that have appeared over the past year, and we look forward to adding regular content as we continue to develop. To do this, we need to expand our list of contributors continually and if you are interested in writing about air power issues – both historical and contemporary – then you can find out how here. If you have any questions, then please leave a comment here or emails us at airpowerstudies@gmail.com.

Header Image: English Electric Lightnings of No. 56 Squadron RAF during an Armament Practice Camp at Akrotiri, c.1963. In the foreground, a technician is preparing a Firestreak missile for loading. (Source: Defence Imagery MoD)