#BookReview – Limiting Risk in America’s Wars: Airpower, Asymmetrics, and a New Strategic Paradigm

#BookReview – Limiting Risk in America’s Wars: Airpower, Asymmetrics, and a New Strategic Paradigm

By Wing Commander Alec Tattersall

Phillip S. Meilinger, Limiting Risk in America’s Wars: Airpower, Asymmetrics, and a New Strategic Paradigm. Annapolis: MD, Naval Institute Press, 2017. Illustrations, Notes, Bibliography, Hbk. xx + 277 pp.

51RBmypL-cL._SX329_BO1,204,203,200_

The US possesses the pre-eminent military force in the world today. The record of the US in conflict since the Second World War does not, however, reflect this capability pre-eminence. In a recent online article, Harlan Ullman noted that:

President John F. Kennedy tartly observed that there is no school for presidents [but] there needs to be a way to bring knowledge and understanding to bear on presidents’ decisions.[1]

Ullman’s concern is that President’s, and those that advise them, are ill prepared for determining political strategy in the context of using military force.

It would not be inappropriate to suggest that Phillip S. Meilinger’s new book is one way of addressing this knowledge deficit. In simple terms, this is a book about US strategy, or rather re-thinking US strategy in the context of protecting national interests subject to the usual pressures of representative democracy. Pressures that require amongst other things maintenance of public support, which is increasingly sensitive to the costs of war in both people and money. As such Meilinger advocates for a reorientation of US military policy to focus on its asymmetric strengths in areas such as air and naval power, special forces (SOF), increasingly pervasive intelligence, surveillance and reconnaissance (ISR) and intelligence analysis, against enemy vulnerabilities, and at the same time limit the States exposure to the risk of ‘casualties and cost’. While a simple concept, it is a shift away from current US strategic policy that follows Clausewitzian notions of using conventional ground forces against enemy strengths.

Meilinger starts by reminding us of the main problem to be addressed – designing military strategy to achieve political goals with the highest chance of decisive military victory but at the least cost. Railing against the Clausewitzian model of seeking decisive victory by attacking an enemy’s strength head-on, and its attendant higher cost and risk of failure, Meilinger reviews the work of several renowned strategists including Basil Liddell Hart, J.F.C. Fuller, Antoine Jomini and Sun Tzu to identify an alternative strategic direction. The common thread he draws from such strategists is of using an asymmetric advantage to strike at an enemy’s weakness while protecting your own. He draws upon the example of indirect second-front operations that he defines as:

[g]rand strategic flanking manoeuvres involving a major military force that strikes the enemy unexpectedly somewhere other than the main theatre of action (the source of the enemy’s strength) and is directed to achieving clear political objectives. (p.31)

Within the concept of second-fronts, Meilinger sees a basis to provide the US with an asymmetric advantage over enemies, with the promise of limiting the America’s exposure to casualties and cost.

Meilinger then examines both successful and unsuccessful historical incidences of second-fronts from the Peloponnesian war through to the Second World War to determine whether they are conceptually relevant today. This examination identifies that the reasons for opening a second-front exist today. These reasons are to avoid enemy strongpoints, increased morale, gaining an economic advantage, splitting an alliance, denying or gaining access to resources, the base for further operations, taking advantage of a unique strength. Importantly, the contemporary need for states to limit risk and preserve resources makes the most fundamental reason for adopting second-fronts. Also, the use and creation of asymmetry against an enemy by avoiding their strengths and attacking their vulnerabilities to limit risk and cost are of significant relevance to the American public. Similarly, those factors prominent in success or failure of second-fronts such as valid strategy, competent planning, competent leadership, accurate and timely intelligence, friendly or neutralised local population, secure lines of communication, maritime and air superiority, are also still current.

170415-F-QP712-0286C
F-35A Lightning II joint strike fighters land at RAF Lakenheath, 15 April 2017. The arrival of these aircraft marked the first F-35A fighter training deployment to the US European Command area of responsibility or any overseas location. The aircraft is assigned to the 34th Fighter Squadron at Hill Air Force Base, Utah. (Source: US Department of Defense Images)

While many of these factors are commonly addressed, Meilinger raises a couple of issues that are perhaps core to the application of an appropriate alternative strategy to the achievement of desired political objectives. Success requires both sound policy and strategy, the setting of which requires the military leadership to provide appropriate advice and guidance to the government. Political objectives must be achievable through an aligned strategy that military planners design to maximise the chance of success while simultaneously minimising risk and costs. As such strategy and the forces to implement it should not be adversely affected by service culture or other factors incongruent with the development of optimal outcomes. Should the government not accept appropriate advice, but instead adopts policy or strategy that inappropriately increases the risk to lives and/or of failure then the military leadership should have the moral courage to seek to positively influence political decision-making or be prepared to resign.

Meilinger highlights the asymmetric advantage provided to the US by its air power capabilities that most, if not all, nations would struggle to contain. Through its reach, speed, ubiquity, flexibility and lethal precision it provides the US direct access to all the strengths and vulnerabilities (centres of gravity) of an enemy, allowing it the ability to undertake direct or indirect attack against them, with drastically reduced risk to its forces and civilians, and a significantly reduced footprint. Concerns over its reputation (psychological, graphic violence, and morality of distance) and risk shifting to civilians, arguably are offset using precision weapons, targeting tools and detailed planning resulting in reduced risk to civilians. In other words, Meilinger claims it is ‘the US asymmetric advantage that limits [US] risk.’ (p. 190)

Since the Second World War, wars have generally been fought with limited means to achieve limited objectives, whether due to avoiding nuclear peers, concerns with maintaining public support, legal restrictions, media, geography, culture or concerns over managing scarce resources. Meilinger’s review of post-Second World War wars undertaken by the US from Korea to Iraq highlights a somewhat chequered record of success premised on US strategy of employing massive conventional ground forces. While air power was used during these wars, it was either used poorly, or when used successfully, the maintenance of an overall Clausewitzian conventional ground force strategy ultimately led to strategic failure.

Meilinger notes that perhaps another model should have been used; one presaged by historical second-front operations that used unique strategies and tactics to solve equally unique problems, with the goal of achieving measurable political results at minimal risk. As such Meilinger suggests that the US should ‘use [its] asymmetric strengths against enemy weaknesses while screening their own vulnerabilities’. In addition to air power, existing asymmetric strengths include SOF and ubiquitous ISR. Combining these three capabilities with ‘determined’ indigenous forces provide a force structure that provides an asymmetric advantage against conventional and unconventional enemy forces, and which when compared to conventional ground force options offers an opportunity for measurable results while saving lives and money.

There is, however, a paradox in Limiting Risk in America’s Wars that is hard to reconcile. The engaging, forthright simplicity of the book is achieved by avoiding overly complex analysis and justification of strategic concepts and their technical detail. Consequently, what makes the book easy to read and understand, also makes it appear shallow in specific areas. While the knowledge of the author is unquestionable, and the notes provide an extra depth of information, there are times when the reader is left to accept the statements of the author as fact, rather than follow an articulated analysis resulting in verifiable deductions or inductions.

180112-A-ZZ999-001
US Army 1st Sergeant Henning Jensen of Headquarters Company, 1st Battalion, 1st Security Force Assistance Brigade, leads a foot patrol with the National Police Transition Team in eastern Baghdad in 2008 while assigned to a military transition team. Transition teams have been replaced by the 1st SFAB to help combatant commanders accomplish theatre security objectives by training, advising, assisting, accompanying and enabling allied and partnered indigenous security forces. (Source: US Department of Defense Images)

For instance, a critical position taken by the author is that the US should adopt the asymmetric advantage provided by the ‘combination of air power, SOF, indigenous forces, and ISR.’ (p. 194) There is a succinct analysis of the air power capability resulting in a deduction that air power provides an asymmetric advantage, but there is no such deductive analysis of the asymmetric advantage of SOF and ISR and only a limited prescription for indigenous troops. While there seems to be a dearth of material on the anti-Clausewitzian aspects of these elements, examples exist. The work of retired General Robert Scales, for instance, on mobile land forces in replication of air power capability would seem to offer the prospect of more detailed analysis of corresponding ground force elements, to aid in fleshing out the elements of Meilinger’s overall strategy. The lack of detailed insight into each of the non-air power elements, by consequence results in the absence of explanation or analysis into how the four nominated forces fit together to deliver an overall asymmetric advantage in contemporary conflict. Admittedly, a core thread of the book is about raising the importance of air power in the overall force composition and strategy mix, but the failure to address the other elements and their combination can lead to questions, which undermines the overall premise of the book and could have been quickly addressed.

One such example is the a priori claim that the use of conventional forces increases the risk of casualties (civilians and own forces) – whether from the dangers of ground combat or the application of air power in support of troops in conflict. If you replace conventional forces with indigenous troops, the same risks still seem to exist. In fact, the risk may increase if the indigenous troops are not as professional or well-equipped as the conventional forces they are replacing. The logical conclusion that can be drawn thus appears to be that the only benefit that exists is a movement of risk from US forces (as no conventional troops are committed) to the indigenous forces and civilians.

Meilinger tellingly notes that if:

US leaders determine that our vital interests be indeed at stake and US involvement is essential the case studies reveal timeless truths regarding the most effective and efficient methods of achieving success at low risk. (p. 205)

Conceptually, after reading this book, it is hard to disagree with this statement. There is something powerful in the simple argument that strategy, and force composition, should be built around the use of asymmetrical advantages against enemy vulnerabilities to reduce risk and cost. However, by attempting to advance this concept one step further and identify, without full supporting analysis, a specific contemporary US strategy with a focus on air power and the other elements of SOF, ISR and indigenous ground forces, it strikes me that Meilinger not only comes to a logically weakened position. As such, Meilinger, unfortunately, misses the opportunity to articulate a more robust and appropriate strategy for the conduct of warfare generally.

Wing Commander Alec Tattersall has been a permanent member of the Royal Australian Air Force (RAAF) since 1996. He is a graduate of the University of Tasmania (Bcom & LLB), the University of Melbourne (Grad. Dip. Military Law), the Australian National University (GDLP and LLM), and is currently undertaking postgraduate research into the philosophical aspects of autonomous weapon systems at the University of New South Wales. His recent postings include; Headquarters Joint Operations Command, Air Force Headquarters, the Directorate of Operations and Security Law, and the Air Power Development Centre. Threaded through these postings are a number of operational deployments to the Middle East and domestically for counter-terrorism.  He is the currently seconded to Special Counsel in the Australian Signals Directorate and is the Defence Legal representative to the 2017/18 meetings of the United Nations Group of Governmental Experts on Lethal Autonomous Weapon Systems. The opinions expressed are his alone and do not reflect those of the RAAF, the Australian Defence Force, or the Australian Government.

Header Image: An MQ-9 Reaper equipped with an extended range modification sits on the ramp on Kandahar Airfield, Afghanistan before a sortie on 6 December 2015. (Source: US Department of Defense Images)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

[1] Harlan Ullam, ‘Why America Loses Every War,’ Defense One, 17 November 2017.

NORAD at 60

NORAD at 60

By Dr Brian Laslie

NTS
NORAD tracks Santa (Source: Author)

Editorial Note: This weekend, 12 May, the North American Aerospace Defense Command (NORAD), the Bi-National defense command between the United States and Canada (and yes, the same organization that tracks Santa every Christmas Eve) is celebrating its 60th Anniversary. As such, we here at From Balloons to Drones wanted to share a portion of the history of this unique organization. The following comes to you from the NORAD History Office and our Assistant Editor Dr Brian Laslie, who is also a historian at NORAD.

With the beginning of the Cold War, American defence experts and political leaders began planning and implementing a defensive air shield, which they believed was necessary to defend against a possible attack by long-range, manned Soviet bombers. By the time of its creation in 1947, as a separate service, it was widely acknowledged the Air Force would be the centre point of this defensive effort. Under the auspices of the Air Defense Command (ADC), first created in 1948, and reconstituted in 1951 at Ent Air Force Base (AFB), Colorado, subordinate US Air Force (USAF) commands were given responsibility to protect the various regions of the United States. By 1954, as concerns about Soviet capabilities became graver, a multi-service unified command was created, involving US Navy, US Army, and USAF units – the Continental Air Defense Command (CONAD). USAF leaders, most notably Generals Benjamin Chidlaw and Earle Partridge, guided the planning and programs during the mid-1950s. The USAF provided the interceptor aircraft and planned the upgrades needed over the years. The USAF also developed and operated the extensive early warning radar sites and systems which acted as ‘tripwire’ against air attack. The advance warning systems and communication requirements to provide the alert time needed, as well as command and control of forces, became primarily a USAF contribution, a trend which continued as the nation’s aerospace defence matured.

DF-ST-82-08601
Four US Air Force Convair F-106A Delta Dart fighters from the 5th Fighter Interceptor Squadron, Minot AFB, fly over Mount Rushmore, on 27 July 1981. (Source: Wikimedia)

As USAF leaders developed plans and proposed warning system programs, they became convinced of the logical need for extended cooperation with America’s continental neighbour, Canada. US-Canada defence relationships extended back to the Second World War when the two nation’s leaders formally agreed on military cooperation as early as 1940 with the Ogdensburg Declaration. These ties were renewed in the late 1940s with further sharing of defence plans in light of increasing Soviet military capabilities and a growing trend of unstable international events, such as the emergence of a divided Europe and the Korean War.

Defence agreements between Canada and the United States in the early 1950s centred on the building of radar networks across the territory of Canada – the Mid- Canada Line (also known as the McGill Fence), the Pinetree Line, and the famous Dew Line. This cooperation led to a natural extension of talks regarding the possible integration and execution of air defence plans. The Royal Canadian Air Force (RCAF) and USAF exchanged liaison officers and met at critical conferences to discuss the potential of a shared air defence organisation. By 1957, the details had been worked out, and the top defence officials in each nation approved the formation of the NORAD, which was stood up on 12 September at Ent AFB, in Colorado Springs, Colorado, home of the US CONAD and its subordinates, including USAF ADC. General Earl Partridge, USAF, who was both the ADC and CONAD Commander, also became commander of NORAD, and the senior Canadian RCAF official, Air Marshal Roy Slemon, who had been the critical Canadian delegate in most of the cooperation talks, became deputy commander, NORAD. Nine months after the operational establishment of the command, on 12 May 1958, the two nations announced they had formalised the cooperative air defence arrangements as a government-to-government bilateral defence agreement that became known as the NORAD Agreement. The NORAD Agreement and its associated terms of reference provided the political connections which would make possible the longevity of the Canadian-US aerospace defence relationship into the future years. The NORAD Agreement, with its requirement for periodic review, ensured flexibility to adapt to a changing defence environment as would be evident by the events that would soon face the fledgeling command.

NORAD Map 1960s

Within one year of its establishment, NORAD began the process of adapting its missions and functions to ‘a new and more dangerous threat.’ During the 1960s and 1970s, the USSR focused on creating intercontinental and sea-launched ballistic missiles and developed an anti-satellite capability. The northern radar-warning networks could, as one observer expressed it, ‘not only [be] outflanked but literally jumped over.’ In response, the USAF built a space-surveillance and missile-warning system to provide worldwide space detection and tracking and to classify activity and objects in space. When these systems became operational during the early 1960s, they came under the control of the NORAD.

In NORAD’s 60-year history, perhaps the most notable symbol of the command has been the Cheyenne Mountain Operations Center (CMOC), often referred to as simply ‘Cheyenne Mountain.’ This vast bunker complex, which became fully operational in 1966, sat more than 1,500 feet underground and consisted of 15 buildings, which comprised the central collection and coordination facility for NORAD’s global-sensor systems.

North-Portal_large
Entrance to Cheyenne Mountain Operations Center complex. (Source: Author)

Throughout the 1970s, the ballistic missile threat caused policymakers to reassess the effectiveness of the air defence system. This meant the potential demise of the arguments for enhanced traditional air defence and moved NORAD to focus on such challenges as an improved warning of missile and space attack, defence against the ICBM, and more significant protection and survival of command, control and communication networks and centres. This resulted in a reduction of the USAF interceptor forces and closure of various portions of the radar network. Modernization of air defence forces became a hard argument. Because of changes in US strategic policy, which had come to accept the concept of mutual vulnerability to ICBM attack, the need to spend about $1 billion a year on air defence was challenged. In 1974, Secretary of Defense James Schlesinger stated the primary mission of air defence was to ensure the sovereignty of airspace during peacetime. There followed further reductions in the size and capability of the air defence system. By the late 1970s, the remaining components – some 300 interceptors, 100 radars and eight control centres – had become obsolescent and uneconomical to operate.

Over the years, the evolving threat caused NORAD to expand its mission to include tactical warning and assessment of possible air, missile, or space attacks on North America. The 1975 NORAD Agreement acknowledged these extensions of the command’s mission. Consequently, the 1981 NORAD Agreement changed the command’s name from the North American ‘Air’ Defense Command to the North American ‘Aerospace’ Defense Command.

canyon-1
NORAD Commanders have even turned up in the funny pages! Here the NORAD commander, who bore a striking resemblance to actual NORAD commander General Laurence Kuter, briefs Steve Canyon (Source: Author)

The 1980s brought essential improvements for the aerospace defence mission. Again, NORAD demonstrated adaptability to meet these changes. In 1979, the US Congress ordered the USAF to create an air defense master plan (ADMP). The ADMP, modified and upgraded, became the US administration’s outline for air defence modernisation and the foundation for NORAD cost-sharing discussions between Canada and the United States. The modernization accords signed in 1985 called for the replacement of the DEW Line radar system with an improved arctic radar line called the North Warning System (NWS); the deployment of Over-the-Horizon Backscatter radar; greater use of USAF Airborne Warning and Control System (AWACS) aircraft; and the assignment of newer USAF aircraft, specifically F-15s, F-16s, and CF-18s, to NORAD.

The late 1980s witnessed another expansion of the NORAD mission. On 29 September 1988, President Ronald Reagan signed legislation that involved the US Department of Defense, and specifically NORAD, in the campaign against drug trafficking. The command’s role in this mission was to detect and track aircraft transporting drugs and then report them to law enforcement.

On 11 September 2001, terrorists hijacked four passenger airliners, two of which obliterated the World Trade Center, in New York City, while another shattered part of the Pentagon. One of the four aircraft crashed in Pennsylvania before hitting its target, apparently either the US Capitol or the White House. The event made it clear that attacks on the homeland would not necessarily come only from across the poles and oceans which buffered the North American continent.

In the immediate aftermath of the 9/11 attacks, NORAD began Operation NOBLE EAGLE. The purpose of this still-ongoing air patrol mission was to defend the United States against terrorist aggression originating from either within or outside the nation’s air borders. NOBLE EAGLE missions were executed primarily by the USAF First Air Force, a NORAD unit under the command of the Continental NORAD Region (CONR), located at Tyndall AFB, in Florida. By June 2006, NORAD had responded to more than 2,100 potential airborne threats in the continental United States, Canada, and Alaska, as well as flying more than 42,000 sorties with the support of USAF AWACS and air-to-air refuelling aircraft.

NOBLE EAGLE’s response has become institutionalised into daily plans and NORAD exercises through which the command ensures its capability to respond rapidly to airborne threats. USAF units of NORAD have also assumed the mission of the integrated air defence of the National Capital Region, providing ongoing protection for Washington, D.C. Also, as required, NORAD forces have played a critical role in air defence support for National Special Security Events, such as air protection for the NASA shuttle launches, G8 summit meetings, and even Superbowl football events.

In recognition of the changing threat environment of the post-9/11 world, the United States Department of Defense stood up, in October 2002, US Northern Command (USNORTHCOM) as a joint service command to execute the mission of homeland defense across all domains. With NORAD already executing the air defense mission of North America, it was a logical step to co-locate the headquarters of NORAD and USNORTHCOM in Colorado Springs, Colorado, and to retain a dual-hatted commander relationship between NORAD and the new US joint command.

As NORAD looked to the future, past threats re-emerged. In 2014, Russian long-range aviation and maritime activity reached levels not seen since the Cold War: more sorties, supported by more tankers, and more sophisticated linkages between air and maritime intelligence collection than ever before. This activity underscored an aggressive Russian military enjoying new prosperity, proficiency, and ever improving capabilities that had NORAD focused on the Russian Bear once more. NORAD’s three operational regions in Alaska, Canada, and the Continental United States, routinely responded to incursions by Russian long-range aviation aircraft entering the North American Air Defense Identification Zone (ADIZ) or the Canadian Air Defense Identification Zone (CADIZ).

norad

As NORAD celebrates its 60th this weekend, we here at From Balloons to Drones send a very ‘Happy Anniversary’ to both America and Canada and to the Command itself for providing 60 plus years of aerospace warning, control, and defense to the Homeland. We know that you have the watch!

Dr Brian Laslie is a US Air Force Historian and currently the Deputy Command Historian at North American Aerospace Defense Command (NORAD) and United States Northern Command (USNORTHCOM). A 2001 graduate of The Citadel and a historian of air power studies, he received his Masters’ from Auburn University Montgomery in 2006 and his PhD from Kansas State University in 2013. He is the author of Architect of Air Power: General Laurence S. Kuter and the Birth of the US Air Force (2017) and The Air Force Way of War (2015). The latter book was selected for the Chief of Staff of the Air Force’s 2016 professional reading list and the 2017 RAF Chief of the Air Staff’s reading list. He can be found on Twitter at @BrianLaslie.

Header Image: A USAF F-22 Raptor of the 3rd Wing escorts a Russian Air Force Tu-95 Bear bomber near Nunivak Island, c. 2007. This was the first intercept of a Bear bomber for an F-22, which was alerted out of Joint Base Elmendorf-Richardson’s Combat Alert Center. (Source: US Department of Defense Images)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

Small Air Forces and #HighIntensityWar: Multinational Cooperation as an Opportunity to Build and Strengthen their Capabilities

Small Air Forces and #HighIntensityWar: Multinational Cooperation as an Opportunity to Build and Strengthen their Capabilities

By Maria E. Burczynska

The introduction to the recent #highintensitywar series run by From Balloons to Drones and The Central Blue suggested that the character of military conflict is changing due to the increased possibility of high-intensity war, which, in turn, will present significant challenges to Western militaries. While the series introduction suggested that post-Cold War conflicts presented few challenges for air forces seeking to maintain control of the air the increasing likelihood of a high-intensity war may well change that scenario. In such a case, not only will the ability to achieve air dominance be challenging but also, if that is not achieved then the ability to perform the full spectrum of air power roles and using all capabilities available may be restricted too. Such a situation may prove especially difficult for small air forces which often lack specific capabilities in the first place.

This article focuses predominantly on small European air forces with Poland and Sweden as case studies. It discusses the situation in which these two air forces find themselves after the end of the Cold War and the changes they have undergone. In doing so, this article also briefly introduces some of the general trends and challenges that took place during the post-Cold War years in Europe such as decreasing defence budgets and the downsizing of armed forces. The article identifies principal areas where small European air forces suffer from capability shortcomings and then moves on to discuss the role of multinational cooperation as a means to make up for these gaps.

What is a Small Air Force?

When speaking of a small air force, one could think of it looking at its actual size, its number of the aircraft and its number of personnel. However, this article defines a small air force according to its capabilities. This follows the definition provided by Sanu Kainikara who recognised four categories of air forces; the US Air Force, large air forces, small air forces and niche air forces. These differ from each other regarding the scope of their capabilities, their ability to pursue operations independently as well as the presence of an indigenous industry supporting the air force’s needs at the national level.[1] According to this classification, small air forces can perform the four fundamental roles of air power; control of the air, intelligence, surveillance and reconnaissance (ISR), attack and air mobility. On the other hand, small air forces do not have the resources necessary to undertake such roles to a considerable extent and over a prolonged period. Therefore, small air forces would not be able to conduct independent large air operations. However, they are often the desired ally that can efficiently work within a coalition.

Both the Polish and Swedish Air Forces (AF) comfortably fit into the category of a small air force. They have necessary resources to perform the full spectrum of capabilities within the already mentioned air power roles. However, their resources are insufficient, sometimes falling to single numbers of an aircraft of specific types. That makes them unable to perform independent large-scale military operations. Finally, both countries have some industrial capacity to support national air power capabilities, such as PZL Mielec and PZL Świdnik, now part of respectively Sikorsky Aircraft Corporation and Leonardo-Finmeccanica’s Helicopter Division in Poland, or Saab in Sweden.

European Air Power after 1991

In the post-Cold War years European air forces and militaries, in general, underwent certain transformations. Primarily, military expenditure by European states has dropped noticeably. In Poland, defence expenditure has decreased from 2.6% of the GDP in 1990 to 2.0% in 2016 while in Sweden it has dropped from 2.6% to 1.0% in the same period.[2] In line with decreasing defence budgets was the gradual downsizing of air forces and the armed forces in general. For example, in Poland, the number of active personnel has dropped from 86,200 men in 1990 to 16,600 in 2015.[3] At the same time, the number of officers serving in the Swedish AF fell from 8,000 to 3,300.[4] Moreover, it was not only manpower that dropped in numbers but also available equipment. The Polish AF reduced from 800 aircraft in 1990 to 300 in 1998 with the target of 100 to be reached in 2002.[5] A similar process also took place in the Swedish AF, but, in this case, it was initiated as early as the 1960s when the number of combat aircraft started to drop from 800 and reached 400 in the 1990s.[6]

The above situation led to specific organisational and structural changes within both the Polish and Swedish AFs. In case of the Polish AF, these transformations started at the very top when the Air Force (Wojska Lotnicze) and the Country Air Defence Force (Wojska Obrony Powietrznej Kraju) merged to form the Air Force and the Counter-Air Defence Forces (Wojska Lotnicze i Obrony Powietrznej). In 2004, the latter formation was finally re-named as the Polish Air Force (Siły Powietrzne). Also, the building blocks of the Polish AF was changed by replacing two of its existing squadrons with regiments.[7] Similar re-organisation took place within the Swedish AF when out of its 12 Wings, and the main air bases, only four remained operational while the other eight were closed.[8]

The transformation of the two air forces also involved modernisation of their already reduced fleets. In Sweden, that process focused on three areas. First, the Swedish AF replaced its AJ/JA-37 Viggen aircraft with JAS-39 Gripen. Second, it introduced more advanced types of munitions and then finally it has sought to upgrade its command, control, communications, and intelligence system.[9] For Poland, the air force modernisation was challenging because the overwhelming majority of the country’s aircraft was built either in the Soviet Union or under licence from them. In the post-Cold War years, these aircraft delivered little modern combat capability. As such, in the process of modernisation, the Polish AF replaced its MiG-21 and MiG-23 fighters with 22 MiG-29s bought from Germany in 2003 and 48 F-16s delivered in years 2006–2008 from the US. They also acquired 17 CASA C-295M transportation aircraft.[10] Finally, on the 1 January 2016, Poland opened the twelfth unmanned aerial vehicle (UAV) base that was the first of its kind in the country.

105 Polish Air Force MiG-29A Fulcrum ILA Berlin 2016
A Polish Air Force Mikoyan-Gurevich MiG-29A Fulcrum at the ILA Berlin Air Show 2016. (Source: Wikimedia)

Limitations of European Air Power

Despite all the organisational and structural transformations, and fleet modernisation that has taken place over the last 30 years, the Polish and Swedish AFs remain small air forces and, as such, somewhat limited in their capabilities. Principally, their fleets are relatively small; the Polish AF possesses 283 aircraft in total while the Swedish AF numbers 231 airframes including the inventory of the Armed Forces Helicopter Wing.[11] However, the Polish and Swedish AFs are also limited in areas that are representative of the significant shortcomings of European air power in general, namely air transport (AT), ISR and air-to-air refuelling (AAR). Significant gaps in these three areas were identified as early as the conflicts in Bosnia and Kosovo in the 1990s. However, these capability gaps have become even more evident after the involvement of European air forces in operations over Libya in 2011. Operations over Libya revealed not only the low capacity of European air forces in the areas of AT, ISR, and AAR resources but also their heavy reliance on the US for those capabilities.[12]

Both Poland and Sweden continue to experience significant shortcomings in these three areas. For example, the Polish AF has only 45 transport aircraft while for Sweden that number drops to barely eight.[13] The differences are even more significant when it comes to ISR and AAR. In case of AAR, the Swedish AF has one tanker aircraft.[14] Poland, on the other hand, does not possess any aircraft of that type. However, in 2014, together with Norway and the Netherlands, Poland decided to acquire a fleet of Airbus A330 multi-role tanker transports.[15] The situation is similar in the realm of ISR. Sweden has five ISR aircraft while the Polish have none.[16]

Examples of Multinational Cooperation Initiatives

Multinational cooperation is one way to make up for such shortcomings in small air forces where resources are limited. It is also the cost-effective option. This cooperation takes different forms, from pooling and sharing resources to training programmes but they are always collective initiatives. As such, these initiatives require participating states to be willing to share the costs of running the project in areas such as the acquisition and maintenance of platforms. As a result, multinational cooperation can significantly reduce the financial burden that would be placed on a small air force if it were to develop such capabilities from scratch. Such pooling and sharing of capabilities also present a viable interim solution in the case where a country is already working towards developing a particular capability that has not yet become fully operational. An example of such an initiative is Poland’s involvement in the Alliance Ground Surveillance (AGS) programme whereby 15 NATO members are acquiring a system consisting of five RQ-4 Global Hawk UAVs and advanced radar systems, which altogether will allow for providing persistent surveillance from high-altitudes.[17] This initiative presented a viable interim solution for Poland which does not possess any air surveillance capability. While Poland is currently developing a UAV fleet which could provide that capability, until it becomes fully operational, AGS can fill that gap. Poland had been a member of the AGS programme until 1 April 2009 when the country withdrew due to financial reasons. Poland later re-joined the programme in April 2014.[18] Another way to make up for the lack of national ISR capability is participation in the NATO Airborne Early Warning (NAEW) system. The initiative started in 1982 and, as such, is one of the oldest and the most successful cooperative initiatives in NATO and Europe. Poland joined NAEW in 2006.[19]

An exciting initiative addressing both the lack of AT and AAR capability, but pursued outside of NATO and EU frameworks, is the Air Transport, Air-to-Air Refuelling, and other Exchange of Services (ATARES) programme developed by the Movement Coordination Centre Europe (MCCE). This project promotes the exchange of services – AAR for AT calculated using Equivalent Flying Hour (EFH).[20] For example, Poland does not have an AAR capability. Therefore, Poland uses ATARES to give aircrews an opportunity to train on those particular platforms and, in return, offers AT capabilities.[21] Interestingly that capability does not have to be provided to that particular country from which AAR was used in the first place. The agreed number of EFH need only to be returned to the initiative and therefore may be used by any one of its members. Sweden offers its AAR services within ATARES even though there is only one tanker in the Swedish AF. For example, in 2017, MCCE provided refuelling support during the Arctic Challenge Exercise, and that support involved the Swedish aircraft.[22]

Other examples of multinational initiatives addressing limitations in national AT capabilities are the Strategic Airlift Interim Solution (SALIS), and the Strategic Airlift Capability (SAC) started in 2005 and 2008 respectively. These are pooling and sharing projects whereby participating states maintain a certain number of aircraft and use these according to their needs. For example, SALIS was created to transport heavy cargo and Poland used the programme to transport helicopters and armoured vehicles to Afghanistan.[23] SAC was designed to support the participating states in their defence or logistical needs at the national and international level. It operates through the Heavy Airlift Wing (HAW) located in Papa Air Base in Hungary. The Polish AF used SAC’s C-17s to transport the bodies of the victims of the Presidential Tupolev crash in Smolensk in April 2010.[24] Sweden, on the other hand, used SAC for a very different purpose – to deliver cargo from Karlsborg Air Base to Mazar-e-Sharif in Afghanistan in September 2009.[25] This was HAW’s first mission done in support of ISAF. Swedish and Polish officers were also among the crew members during the first HAW mission performed in support of ISAF but without any Americans on board.[26]

Of course, none of the members in initiatives such as these has unlimited access to all the available resources. The share they get is usually proportional to their involvement. For example, the annual total of flying hours available under SAC is 3,165, which is divided among the 12-member nations. Both Poland and Sweden have entirely different shares equalling, respectively, 4.7% and 17.6%.[27] That gives 148.8 flying hours to be used by the Polish AF and 550.7 by the Swedish.

Red versus Blue
A Swedish JAS-39 Gripen returns to the play areas of the Arctic Challenge exercise over Norway, after taking on fuel from a U.S. Air Force KC-135R Stratotanker on 24 September 2013. (Source: Wikimedia)

Conclusion

This article has discussed some of the challenges confronting small air forces and whether multinational initiatives can increase their capabilities with specific reference to the Polish and Swedish AFs. The answer is yes. First, the examples discussed show that these projects are successful tools in building and strengthening capabilities such as AT, ISR and AAR. For small air forces, multinational cooperation gives an opportunity to develop these three areas to the extent that could not be afforded otherwise, or that would incur much higher costs.

Second, it is not only the pooled and shared fleets that the participating air forces can benefit from, but also training. The aircrews delegated to take part in any multinational initiatives return home with the experience they would often not have had a chance to develop otherwise. Here, it is also worth mentioning, that, along with pooling and sharing arrangements there are also programmes designed specifically for training purposes. These programmes present an excellent opportunity for air forces, especially the small ones, to exercise together towards capabilities that, in their home country are not available at all, or that are available but on an insufficient scale. Examples of such initiatives are the European Air Transport Training (EATT), and the European Advanced Airlift Tactics Training Course (EAATTC) started in 2012 and 2014 under the umbrella of the European Air Transport Fleet programme. The Polish AF has participated in both training initiatives in 2016 and 2017 while in 2015 it held observer status in EATT. Sweden also took part in EATT in 2013 and 2015 and was an observer nation in 2014. Another prominent example of a training arrangement involving the Swedish AF is the Cross-Border Training programme established in 2009. This project brings together Sweden, Norway and Finland and enables their air forces to use each other’s airspace to train together on a weekly basis.

Third, involvement at the multinational level in different forms of cooperation – pooling and sharing arrangements, expeditionary missions, air policing, and exercises, gives credibility to small air forces. The more often they work together with other nations, the more they will be perceived as a valuable and reliable potential partner. At the same time, such involvement requires certain work to be done, for example, making sure that one’s air force and its procedures, equipment, personnel’s knowledge, and abilities, are interoperable with potential partners in a coalition. This may incur additional costs, which may be challenging for small air forces.

Finally, while they appear very appealing, it must be remembered that multinational initiatives are not the panacea for capability gaps. For example, in many cases, a country only receives in return what is proportional to one’s contribution. Therefore, the multinational projects allow for the new capabilities to be built but on a limited scale and according to one’s financial input. As a result, collective capability development should not replace national ones. All European air forces, including the small ones, still need to develop their national capabilities. Multinational, collective arrangements may complement them, but they should never replace them altogether.

Maria Ewa Burczynska is a PhD candidate in the School of Politics and International Relations at the University of Nottingham where she is affiliated with the Centre for Conflict, Security and Terrorism. Her primary area of interest is European air forces and their participation in multinational operations and initiatives. She is also interested in the subject of disaster management as another dimension of national security.

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

Header Image: A Saab AJS-37 Viggen of the Swedish Air Force Heritage Flight on display at the RAF Waddington air show in 2013. (Source: Wikimedia)

[1] See, Sanu Kainikara, At the Critical Juncture. The Predicament of Small Air Force (Canberra: RAAF Air Power Development Centre, 2011).

[2] SIPRI Military Expenditure Database 2017.

[3] ‘Europe’ in The Military Balance, 115:1 (2015), pp. 57-158; ‘The Alliances and Europe’ in The Military Balance, 90:1 (1990), pp. 44-96.

[4] Ibid.

[5] Barre R. Seguin, Why did Poland choose the F-16?, The Marshall Center Occasional Paper Series (Garmisch-Partenkirchen: The George C. Marshall European Center for Security Studies, 2007), p. 6.

[6] Richard A. Bitzinger, Facing the Future. The Swedish Air Force, 1990-2005 (Santa Monica, CA: RAND, 1991), pp. 13-5.

[7] Rafał Ciastoń et al, Siły Zbrojne RP – stan, perspektywy i wyzwania modernizacyjne (Warszawa: Fundacja im. Kazimierza Pułaskiego, 2014), p. 54.

[8] Bitzinger, Facing the Future., pp. 11-4; Försvarsmakten, Flygvapnet.

[9] Bitzinger, Facing the Future., pp. 37-45.

[10] Zbigniew Średnicki, ‘Modernizacja techniczna sił powietrznych,’ Przegląd Sił Zbrojnych, 3 (2015), pp. 8-15.

[11] ‘Europe’ in The Military Balance, 118:1 (2018), pp. 65-168.

[12] Elizabeth Quintana, Henrik Heidenkamp and Michael Codner, Europe’s Air Transport and Air-to-Air Refuelling Capability: Examining the Collaborative Imperative, RUSI Occasional Paper (August 2014), p. 6.

[13] ‘Europe’ in The Military Balance, 118:1 (2018), pp. 65-168.

[14] Ibid.

[15]European multirole tanker transport fleet takes shape,’ European Defence Agency, 19 December 2014.

[16] ‘Europe’ in The Military Balance, 118:1 (2018), pp. 65-168.

[17]Alliance Ground Surveillance (AGS),’ North Atlantic Treaty Organisation, updated 6 June 2017.

[18] Grzegorz Hołdanowicz, ‘Nieprimaaprilisowe pożegnanie z AGS,’ Raport – Wojsko Technika Obronność, May 2009.

[19] Tadeusz Wróbel, ‘Tysiąc lotów AWACS-a nad Polską,’ Polska Zbrojna, 13 October 2016.

[20] Quintana et al, Europe’s Air Transport and Air-to-Air Refuelling Capability, p. 11.

[21] Colonel in the Polish Air Force and a scholar at the National Defence University in Warsaw, interview conducted by the Author on 30 June 2016.

[22]MCCE support to Arctic Challenge 2017,’ Movement Coordination Centre Europe, 29 May 2017.

[23] Juliusz Sabak, ‘Rosyjskie An-124 nadal wożą sprzęt NATO,’ Defence 24, 13 January 2017.

[24] Colonel in the Polish Air Force and a scholar at the National Defence University in Warsaw, interview conducted by the Author on 22 June 2016.

[25]SAC Milestones 2006 –,’ Strategic Airlift Capability.

[26] Ibid.

[27]The Strategic Airlift Capability (SAC),’ Strategic Airlift Capability.

Call for Contributions – High-Intensity Warfare in the 21st Century

Call for Contributions – High-Intensity Warfare in the 21st Century

Since the end of the Cold War, the West’s militaries have been engaged in a series of protracted and persistent low-intensity counterinsurgency campaigns. For air forces, this has broadly meant involvement in campaigns where there have been few serious challenges to control of the air and air dominance was assumed. However, as we move further into the twenty-first century, that scenario is likely to change with the likelihood of peer-on-peer high-intensity conflict increasing. In such conflicts, air dominance will have to be fought for, and maintained, to utilise the full spectrum of capabilities afforded by the exploitation of the air domain.

Aim

The Central Blue and From Balloons to Drones seeks to commission a series of articles that examine critical themes related to the challenge of preparing modern air forces for the possibility of high-intensity conflict as they transform into 5th generation forces. As well as informing broader discussions on the future of conflict, these articles will provide the intellectual underpinnings for a Williams Foundation seminar on the subject of the requirement of high-intensity conflict to be held in Canberra, Australia in March 2018.

Themes

The editors seek contributions that provide a variety of perspectives on the following key themes:

Strategy and Theory | Future Roles | Emerging Threats | Air Force Culture

Force Structure | Technology and Capabilities | Ethical and Moral Challenges

Doctrinal Trends | Education | Training

Articles can range from historical discussions of the above themes through to contemporary perspectives. Perspectives can also come from a number of related disciplines including history, strategic studies, international relations, law, and ethics.

Submission Guidelines

Articles framed around one of the above themes should be c. 2,000 words. Submissions should be submitted in Word format and emailed to the addresses below with ‘SUBMISSION – HIGH-INTENSITY WARFARE’ in the subject line. Also, please include a 50-100-word biography with your submission. Please be careful to explain any jargon. Publication will be entirely at the discretion of the editors. These articles will appear on the websites of The Central Blue and From Balloons to Drones simultaneously. We will be publishing articles from the middle of February 2018 onwards.

Keen to write but need some guidance? Email us, and we can link you up with a mentor-editor who can assist you before formal submission.

Contact Information

For more information, please contact Wing Commander Travis Hallen (Co-editor, The Central Bluecentralblue@williamsfoundation.org.au) or Dr Ross Mahoney (Editor, From Balloons to Dronesairpowerstudies@gmail.com).

Header Image: An RAF Harrier waits in a hangar at Kandahar, Afghanistan prior to departure, c. June 2009. (Source: Defence Imagery MoD)

#Commentary – UAVs: An Affordable Defence for Europe?

#Commentary – UAVs: An Affordable Defence for Europe?

By Dr Tamir Libel and Emily Boulter

With eyes pinned on Europe´s eastern frontier, it has never been more critical to have the means to reduce tensions between key NATO allies and Russia. Are there ways to help lessen costs that come with such an undertaking?

ROYAL AIR FORCE TYPHOONS INTERCEPT 10 RUSSIAN AIRCRAFT IN ONE MISSION
An air-to-air image taken over Baltic airspace by the crew of an RAF Typhoon, intercepting Russian Mikoyan MiG-31 aircraft. (Source: Defence Imagery MoD)

According to reports, Russian aerial platforms increasingly violate the airspace of its western neighbours, which is generating considerable unease. While NATO is responding routinely by intercepting the invading aeroplanes and increasing the presence of its combat troops on its eastern flank (four battalions stretching from Poland to the Baltic), a question has arisen over whether or not it is possible to beef up defences in Eastern Europe, while de-escalating tensions. Russian officials consistently say that NATO was responsible for openly displaying its anti-Russian intentions by deploying forces in Poland and the Baltic States.

However, NATO’s recent creation of a new Atlantic command and logistics command, with additional reports showing that since the end of the Cold War the alliance has never actually prepared for the deployment of combat troops on its eastern flank, is thus an implicit admission that NATO is not in a position to deploy large-scale forces the way Russia can. In particular, Russia is paying close attention to the defence of its airspace and has made plans to increase its air defence capabilities, to prevent violations. Meanwhile, NATO lacks both combat aircraft and short-range air defences. According to a report issued by the RAND Corporation, If Mr Putin opts to launch a land grab against the Baltic States, his forces could occupy at least two Baltic capitals within 60 hours.

Although the utmost effort should be taken to de-escalate and resolve the current crisis, preparations are necessary to maintain a state of deterrence against Russia, while also reassuring ‘front-line’ members, i.e. Poland, Estonia, Latvia and Lithuania. Deploying squadrons of UAVs (unmanned aerial vehicles) provide several key benefits: They offer credible ISTAR (information, surveillance, target acquisition, and reconnaissance) and strike capabilities, which help maintain a level of deterrence, but will not pose a threat or spark offensive actions by the Russians.

Drawing upon a study that examined among other things, the rapid expansion of  Israeli Air Force (IAF) squadrons in response to unforeseen needs following the outbreak of the Second Intifada, a committed effort by NATO to amass six to eight armed UAV squadrons (each with 20-24 platforms) over a period of two years should be both feasible and more cost-effective than deploying conventional forces. The recent difficulties in mobilising and deploying a mere 4,500 troops to NATO’s eastern flank indicates that the alliance has a shortage of both combat troops and political capital to enhance recruitment among member states.

Reaper Remotely Piloted Air System
An RAF Reaper at Kandahar Air Base, Afghanistan, c. 2014 (Source: Defence Imagery MoD)

In contrast, turning to unmanned, increasingly autonomous platforms as the first line of defence could not only (at least in the first instance) rely on existing infrastructure (e.g. air force bases, communication infrastructure etc.) but would also sit better with electorates reluctant to send troops to allies in Eastern Europe. Politically, member states probably would be far more willing to finance the acquisition and maintenance of UAVs squadrons by local teams. This would also help solve the issue of mobilisation as was demonstrated with NATO’s brigades. UAVs can help realistically build deterrence and even if there are failures, or even if half of the squadrons are destroyed, no lives, i.e. aircrews, would be lost.

Relations between Russia and the West are in a poor state, and tensions continue to escalate. Those member states who oppose the increased deployment of combat troops and the build-up of more offensive capabilities (e.g. tanks or jet fighters), could be more receptive to opting for cheaper solutions, which negates the need to deploy military personnel. The fact remains that Europe needs better deterrence in the face of Russian aggression. Therefore investing in unmanned autonomous systems, would go some way in providing, the security and surveillance that will be crucial in the years to come.

Emily Boulter is a writer based in Switzerland. She is the creator of the current affairs blog ‘From Brussels to Beirut.’ From 2010 to 2014 she worked as an assistant to the Vice-chair of the Foreign Affairs Committee in the European Parliament. She is a frequent contributor to Global Risk Insights.

Dr Tamir Libel has just finished a two-year Marie Curie COFUND fellowship at the Barcelona Institute of International Studies (IBEI). In early 2018 he will join the German Institute of Area and Global Studies (GIGA) as an associate fellow. He is the author of European Military Culture and Security Governance: Soldiers, Scholars and National Defence Universities (Routledge, 2016). He can be found at Twitter @drtamirlibel.

Header Image: A Russian SU-27 Flanker aircraft banks away with an RAF Typhoon in the background, 17 June 2014. (Source: Defence Imagery MoD)

#BookReview – Airpower Applied: U.S., NATO, and Israeli Combat Experience

#BookReview – Airpower Applied: U.S., NATO, and Israeli Combat Experience

By Dr Brian Laslie

John Andreas Olsen (ed.), Airpower Applied: U.S., NATO, and Israeli Combat Experience. Annapolis, MD: Naval Institute Press, 2017. Notes. Bibliography. Index. Hbk. 432 pp.

airpower applied

In the most recent work to focus exclusively on air power combat operations, Colonel John Andreas Olsen of the Royal Norwegian Air Force and a visiting professor at the Swedish Defence University in Stockholm, presents a thoroughly researched, persuasive, and insightful work on the study of air power that ranges from large-scale state-on-state actions to the more abundant (some might say most likely) asymmetric fights of the late Twentieth and early Twenty-First Century. Olsen’s name should be more than familiar to anyone with a passing interest in the history of air power. He is the author/editor of numerous works including John Warden and the Renaissance of American Air Power, A History of Air Warfare, Airpower Reborn, Air Commanders, European Air Power, and Global Air Power. Aside from his prolific output, Olsen also has the ability to bring together the most respected names in air power studies to provide chapters in his edited works. The same is true for his latest book, Airpower Applied: U.S., NATO, and Israeli Combat Experience. The purpose of the book, as the title suggests, is to provide a valuation of the American, NATO, and Israeli combat experience from World War II to present campaigns. It is broken into five chapters that cover a total of twenty-nine separate air campaigns or operations. Olsen’s thesis is that ‘knowledge of operational history helps political leaders and military professionals to make better-informed decisions about the use of force.’ Thus, this work is not about ‘lessons learned’ as much as it is a learning tool used to provoke thought and create questions amongst professionals.

Richard Hallion provides the first chapter on ‘America as a Military Aerospace Nation: From Pearl Harbor to Desert Storm.’ Hallion admits that much of America’s advancement during the Cold War was owed to ‘emulation and innovation [rather] than to invention.’ That being said, American air power has moved to the forefront of technology, invention, innovation, and execution in the post-Vietnam era leading up to the dramatic successes of air power during the First Gulf War. Before this Hallion covers many previous aerial campaigns, whose success and failures led to the triumph of Operation DESERT STORM: The Second World War, the Berlin Airlift, Korea, Vietnam, ELDORADO CANYON and JUST CAUSE. Hallion’s contribution here is the best single chapter on the history of American air power from the Second World War to DESERT STORM. However, he, unfortunately, omits any discussion of the failings of Operation EAGLE CLAW, missing an opportunity to discuss the genesis of true air power jointness; this might be forgiven considering that most consider EAGLE CLAW a Special Forces operation with little to do with actual air power. Hallion also misses the mark on his discussion about the use of the F-117 in its combat debut during the operation in Panama. Hallion states ‘The F-117 strike at Rio Hato […] succeeded in stunning the PDF [Panamanian Defense Forces] defenders.’  This, however, is disputed by the Joint History Office’s report on operation JUST CAUSE which stated that ‘[D]espite radio broadcasts and the use of F-117As and other weapons to stun and intimidate them, most PDF units fought harder than expected before surrendering or fleeing.’[1]

Hallion’s belief in the efficacy of air power is apparent when he states that ‘In the gulf it took one bomb or one missile’ to destroy a target (p. 93). This is an oversimplification and poses a danger to those who would believe it. This view of air power as scalpel needs to be tempered. Bombs and missiles miss and many targets in Iraq had to be repeatedly attacked. There is an oft-repeated axiom that they are called missiles and not hittles for a reason. That being said, Hallion’s chapter represents a concise and persuasive argument detailing just why America has become the eminent air power nation in the Twentieth and Twenty-First Centuries and transitions nicely into the next chapter on air power since DESERT STORM.

Allied Force
A US Air Force B-2 Spirit stealth bomber refuels from a KC-135 Stratotanker on April 6, 1999, during an air strike mission in support of NATO Operation ALLIED FORCE. (Source: Wikimedia)

Benjamin Lambeth provides the second chapter on ‘American and NATO Airpower Applied: From Deny Flight to Inherent Resolve.’ Lambeth demonstrates that air power in ALLIED FORCE was a ‘textbook illustration of airpower in action not to “win a war” but rather to achieve a discrete and important campaign goal short of full-fledged war’ (p. 133). However, when looked at through Hallion’s view of ROLLING THUNDER as a ‘naïve intent,’ there arises an internal inconsistency in the application of air power to achieve limited ends, something that all scholars of air power still struggle to contend with (p. 53). It seems that when air power is used for a limited goal and ‘works,’ air power scholars tend to use it as a good example and when it is used towards a limited end and fails, i.e. ROLLING THUNDER, we use that as an example of why air power should not be used towards limited ends.

Lambeth goes one bridge too far in his admittedly unfinished assessment, of the role of air power in attacking ISIS in Operation INHERENT RESOLVE. Readers in 2017 have something Lambeth did not have when he penned his chapter in 2014/2015, namely three more years of data, which seem to finally indicate that the tide against ISIS has turned and that coalition air power with the support of Iraqi and other forces on the ground have driven ISIS out of the sanctuary cities of Raqqa, Sirte, and Mosul. These campaigns, as part of the most precise air campaign in history, and while limiting civilian casualties, took time. Ironically, nearly precisely the amount of time called for by government officials in 2014 that Lambeth decried in his chapter.

The book shifts its focus here away from the NATO and American experience to two chapters on Israeli Air Force (IAF) combat operations. First, Alan Stephens writes ‘Modeling Airpower: The Arab-Israeli Wars of the Twentieth Century’ detailing the First Arab-Israeli War to the First Lebanon War in 1982. Stephens provides balance by indicating upfront that these conflicts were not only about survival for the country of Israel but the displaced Palestinians as well. Focusing more on the air power side of the conflict, Stephens asks upfront, ‘Why were the Israelis so good and the Arabs so bad?’ The answer soon becomes clear, ‘airpower is very expensive’ (p. 274). Israel exploited an ‘educated workforce, rigorous standards, advanced technology and […] exemplary training’ (p. 276). Arab air forces did not, as history, economics, and culture hindered them.

Raphael Rudnik’s and Ephraim Segoli’s next chapter, ‘The Israeli Air Force and Asymmetric Conflicts, 1982-2014,’ looks at the myriad of smaller conflicts Israel has fought since 1982. The chapter also provides linkages to conflicts Lambeth discussed, thus linking the American, NATO, and Israeli conflicts into an overarching air power learning environment. In other words, those who execute air power struggle with the same problems. Namely, as Rudnik and Segoli stated when discussing Israeli air strikes against Hezbollah, ‘[T]he large gap between its [the IAF] improved assault capabilities and its ability to identify viable targets’ in conflicts where an expressed desire of governments is minimising civilian casualties against increasingly urban enemies (p. 294). This highlights the difficulties faced by the IAF and the USAF, namely the need to prepare for ‘traditional’ air force missions versus the asymmetric conflicts of the 21st Century.

041003-F-3188G-247
A pair of U.S. Marine Corps AV-8B Harriers fly over Iraq at sunset during a mission in support of Operation IRAQ FREEDOM, c. 2004. (Source: Wikimedia)

Colonel John Warden provides a final chapter that looks at ‘The Airpower Profession.’ From a certain point of view, Warden still seems to be litigating his arguments from the First Gulf War by focusing not on fielded forces, but rather on parallel warfare against the five rings, which can also be found in his work, The Air Campaign. Warden also decries the ‘cult of jointness’ (p. 343) and believes that ‘surface officers have far less motivation to concern themselves with direct strategic effects than do air professionals’ (p. 346). Warden’s real value is added when he describes the many areas needed to be understood truly by air power professionals, but more importantly, the attendant ability to articulate the importance of air power. So, what does the education of an air power professional look like? Warden casts a wide net of topics worthy of study including classical and modern military history and strategy but also includes more nuanced fields including economics, secular and religious philosophy, fiction, marketing, and advertising.

Any disagreements this author might have over omissions or discrepancies with this work are relatively minor to the overall importance and continued relevance of this well-written, eloquently argued, and nuanced study of air power operations. If one aspect of air power becomes clear, it is that the U.S., NATO, and Israel have proven their ability in large-scale state-on-state conflict, but the ability to use air power in the asymmetric fight is still being argued, some might say conceived. What is needed is more discussion and a better understanding by those in the military and national security communities on the merits and limits of air power operations in what will only become a more contested environment in the future. From the integration of unmanned aerial vehicles to peer-on-peer conflict, aerial operations will only increase, and a deep understanding of what air power can and cannot provide can only be accomplished through continued works like Airpower Applied.

Dr Brian Laslie is an Air Force Historian and currently the Deputy Command Historian at North American Aerospace Defense Command (NORAD) and United States Northern Command (USNORTHCOM). A 2001 graduate of The Citadel and a historian of air power studies, he received his Masters’ from Auburn University Montgomery in 2006 and his PhD from Kansas State University in 2013. His first book The Air Force Way of War (2015) was selected for the Chief of Staff of the Air Force’s 2016 professional reading list. He lives in Colorado Springs. He can be found on Twitter at @BrianLaslie.

Header Image: A two-ship of Israeli Air Force F-16s from Ramon Air Base, Israel, head out to the Nevada Test and Training Range, July 17 during Red Flag Exercise 09-4, c. 2009. (Source: Wikimedia)

[1] Ronald H. Cole, Operation Just Cause: The Planning and Execution of Joint Operations in Panama, February 1988-January 1990 (Joint History Office, Office of the Chairman of the Joint Chiefs of Staff: Washington, D.C., 1995), p. 41

The Kh-101 and Syria: Maturing the Long-Range Precision-Strike Capabilities of Russia’s Aerospace Forces

The Kh-101 and Syria: Maturing the Long-Range Precision-Strike Capabilities of Russia’s Aerospace Forces

By Guy Plopsky

On September 26, 2017, modernised Tupolev Tu-95MS bombers of the Russian Aerospace Forces (VKS) Long-Range Aviation Command executed another strike with Kh-101 air-launched cruise missiles (ALCMs) against targets in Syria. According to Russia’s Defense Ministry, the missiles targeted ISIS and Jabhat al-Nusra ‘command posts, hardware and manpower concentration areas as well as ammunition depot.’[1] As with previous Russian ALCM strikes during the conflict, the heavily publicised September 2017 strike was intended to serve yet another reminder to the United States and NATO (as well as to other potential adversaries) of the Russian Aerospace Forces’ growing long-range precision-strike capabilities.

Lineup_of_Tu-95_at_Engels_Air_Base
A line up of Tupolev Tu-95MS’ at Engels Air Base c. 2005 (Source: Wikimedia)

Designed by MKB Raduga, the Kh-101 is an advanced conventionally-armed cruise missile with low observable characteristics. The missile has a reported operational range of 4,500km (2,800 miles),[2] and features a guidance package that includes an inertial navigation system (INS), a terrain contour matching (TERCOM) system, a digital scene-matching area correlation (DSMAC) system, and a GPS/GLONASS receiver.[3] Compared with the older, conventionally-armed Kh-555 ALCM, the Kh-101 features significantly improved accuracy and a larger payload, making it suitable for use against hardened targets.[4] Drone footage of Kh-101 strikes from Syria, including the September 2017 strike, appears to attest to the missile’s high-accuracy (though the impact of only several missiles is shown).[5]

Russian bombers first utilised Kh-101s in combat on 17 November 2015, when Tu-160 bombers delivered the new cruise missiles against targets in Syria.[6] The strike, which also included Tu-95MS bombers armed with older Kh-555 ALCMs, marked the combat debut of both the Kh-555 and Kh-101 as well as the Tu-160 and Tu-95MS. Exactly one year later, on November 17, 2016, modernised Tu-95MS bombers executed their first strike with Kh-101 cruise missiles.[7] Before the integration of the Kh-555 and Kh-101 on the Tu-95MS and the Tu-160, and their subsequent employment in Syria, the two bombers were utilised solely for the nuclear deterrence role and did not participate in conventional conflicts.

The only Russian bomber currently in service with the Long-Range Aviation Command to have seen combat before Syria is the Tu-22M3, which flew sorties in the Soviet-Afghan War, the First Chechen War and, more recently, the 2008 Five Day War with Georgia. In all three conflicts, the Tu-22M3 was used exclusively for delivering unguided (or ‘dumb’) bombs – a mission which it continues to fulfil in Syria.[8] Given that bombers delivering unguided munitions are likely to find themselves within range of enemy fighter aircraft and surface-to-air missiles (SAMs), such an approach is only viable for low-intensity conflicts in which the adversary lacks credible air defences. Even then, multiple sorties against a single target may be required, and excessive collateral damage may be caused due to the poor accuracy of unguided bombs. Russia witnessed the difficulty of operating its bombers in a contested airspace first hand in August 2008, when one of its Tu-22M3s was shot down by a Georgian SAM during a strike sortie against a Georgian military base.[9]

The introduction of the Kh-555 and Kh-101, therefore, represents a crucial new capability for Russia’s Long-Range Aviation Command, one which allows it to partially compensate for the lack of a long-range very low observable platform. Unlike the USAF, which operates the B-2A stealth bomber, the VKS does not currently field a long-range very low observable platform capable of penetrating modern integrated air defence systems (IADS) and won’t be fielding one until at least the end of the next decade.[10] Hence, to avoid being targeted by adversary fighter aircraft and ground-based air defences in the event of a conflict, Russian bombers will need to launch long-range conventionally-armed ALCMs from stand-off ranges. This is particularly true for the cumbersome turboprop-powered Tu-95MS – the backbone of Russia’s Long-Range Aviation Command, – which, unlike the Tu-160 and Tu-22M3, is not capable of operating at supersonic speeds.

SU-30SM_escortant_un_Tu-160_qui_lance_un_missile_de_croisière
A Tupolev Tu-160 launching an Kh-101 against a target in Syria, c. 20 November 2015 (Source: Wikimedia)

In this regard, the integration of the Kh-101 on the Tu-95MS dramatically expands the legacy bomber’s conventional strike capability, which until recently, was limited to dropping unguided bombs, transforming it into a formidable long-range precision-strike platform capable of accurately engaging hardened targets in heavily defended areas. At present, Russia is also outfitting its Tu-95MS bombers with SVP systems (developed by ZAO Gefest i T), which will enable Russian bomber crews to retarget their missiles before launch.[11] This will further enhance mission flexibility, allowing modernised Tu-95MS bombers to strike not only fixed but also relocatable targets. The ability of the Kh-101 to cover very large distances also reduces the Tu-95MS (and Tu-160’s) need to rely on in-flight refuelling for long distance missions. This, as several analysts have noted, makes the Kh-101 a particularly valuable asset given Russia’s relatively small fleet of aerial-refuelling tankers and limited overseas basing options.[12] A modernised Tu-95MS can carry up to eight Kh-101 ALCMs on four externally-mounted two-station pylons, while a Tu-160 can carry up to 12 such missiles on two internally-mounted six-station rotary launchers.

Considering that neither ISIS, nor the other factions with whom Russia is presently engaged in active combat with field capable air defenses, the Long-Range Aviation Command’s use of modernized Tu-95MS and Tu-160 bombers with Kh-101 ALCMs in Syria stems from Moscow’s desire to test both the reliability of its new air-launched weapon and its carrier platforms as well as the proficiency of Russian bomber crews under real combat conditions. As with the occasional use of conventionally-armed Kalibr sea-launched cruise missiles (SLCMs) in the Syrian conflict, the employment of Kh-101s is likewise intended to convey a strong signal to Russia’s potential adversaries and reflects Moscow’s desire to place greater emphasis on conventional deterrence. The need to expand precision-strike capabilities and increase reliance on conventional weapons for deterrence has been highlighted in Russia’s 2014 Military Doctrine and has been voiced by Russian military officials.[13] As Russian Defense Minister, Sergei Shoigu, noted in February 2017, though:

[t]he development of strategic nuclear forces remains an absolute priority for us […] the role of nuclear weapons in deterring a potential aggressor will decrease first of all due to development of high-precision weapons.’[14]

For the United States and NATO, Russia’s growing emphasis on conventional long-range precision-strike weapons such as the Kh-101 represents an increasingly pressing need to bolster missile defences.

Guy Plopsky holds an MA in International Affairs and Strategic Studies from Tamkang University, Taiwan. He specialises in air power, Russian military affairs and Asia-Pacific security. You can follow him on Twitter.

Header Image: A Russian Tupolev Tu-160 ‘Blackjack’ in flight over Russia. (Source: Wikimedia)

[1] For a description, see: Russian Ministry of Defense, ‘Нанесение авиаударов Ту-95МС крылатыми ракетами Х-101 по объектам ИГИЛ в Сирии [Tu-95MS Airstrikes with Kh-101 Cruise Missiles Against ISIS Objects in Syria],’ YouTube video, 3:01. Posted September 2017. https://www.youtube.com/watch?v=NaI0QuvgKJA.

[2] ‘Министр обороны России генерал армии Сергей Шойгу провел военно-техническую конференцию [Russian Defense Minister Army General Sergei Shoigu held a Military-technical Conference],’ Russian Ministry of Defense, October 6, 2016

[3] Piotr Butowski, ‘All missiles great and small: Russia seeks out every niche,’ Jane’s International Defense Review, October 2014, pp. 48-9.

[4] Anton Lavrov, ‘Russia’s GLONASS Satellite Constellation,’ Moscow Defense Brief, 60:4 (2017).

[5] For example, see the video footage from September 2017 strike in fn1.

[6] David Cenciotti, ‘Russian MoD Video Shows Tu-160, Tu-95 and Tu-22 Bombers (with Su-27 Escort) Bomb ISIS in Syria,’ The Aviationist, November 17, 2015.

[7] ‘РФ впервые применила в Сирии новые ракетоносцы Ту-95МСМ с крылатыми ракетами Х-101 [Russian Federation Employed new Tu-95MSM Missile Carrier with Kh-101 Missiles in Syria for the First Time],’ TASS, November 17, 2016.

[8] For example, see: Russian Ministry of Defense, ‘Боевой вылет дальних бомбардировщиков Ту-22М3 с территории РФ по объектам террористов в Сирии [Combat Sortie of Long-range Tu-22M3 Bombers from the Territory of the Russian Federation Against Terrorist Targets in Syria],’ YouTube video, 2:10. Posted January 25, 2016. https://www.youtube.com/watch?v=55ni9KbpSv4.

[9] Anton Lavrov, ‘Russian Air Losses in the Five-Day War Against Georgia,’ in Ruslan Pskov (ed.), The Tanks of August (Moscow: Center for Analysis of Strategies and Technologies, 2010), p. 100.

[10] ‘PAK DA: Russian Defense Ministry Reveals When New Bomber Will Fly,’ Sputnik, April 27, 2017.

[11] Dave Majumdar, ‘One of Russia’s Most Deadly Bombers Now Has a Scary New Capability,’ The National Interest, July 5, 2017.

[12] For example, see: James Bosbotinis, ‘Russian Long-Range Aviation and Conventional Strategic Strike,’ Defense IQ, March 5, 2015.

[13] For an English translation of Russia’s 2014 Military Doctrine see https://www.offiziere.ch/wp-content/uploads-001/2015/08/Russia-s-2014-Military-Doctrine.pdf.

[14] ‘Russian Shield: Nukes Priority, but High-Precision Weapons to Play Greater Role,’ Sputnik, February 21, 2017.

Unseating the Lancer: North Korean Challenges in Intercepting a B-1B

Unseating the Lancer: North Korean Challenges in Intercepting a B-1B

By Andy Zhao and Justin Pyke

Introduction

When North Korea threatened to shoot down a B-1B Lancer in response to a September 23rd flight operating off its east coast, a reasonable amount of discussion centred around if the North Koreans have the capability to carry out their threat.[1] This article outlines some of the challenges faced by North Korea if it attempts to shoot down a B-1B operating off the coast in international airspace. Any scenario where United States (US) or South Korean aircraft attempt to penetrate the airspace of North Korea is outside the scope of this discussion.

North Korean Equipment

DN-SN-83-06768
An East German SA-2 ‘Guideline’ similar to that currently operated by the KPAF. (Source: Wikimedia)

North Korea’s primary air defence is provided by the Korean People’s Army Air Force (KPAF). It operates a wide assortment of Soviet/Russian and Chinese equipment, consisting of everything from Chinese J-5s (a MiG-17 ‘Fresco’ derived aircraft) to the Russian MiG-29 9.13s ‘Fulcrum.’ Due to the secretive nature of the KPAF, it is hard to determine the true readiness of these aircraft in inventory. Many KPAF aircraft originate from the 1960s and are likely reaching their maximum airframe flight hours and/or are suffering from a lack of spare parts as indicated by the decreasing numbers of operational aircraft visible on airfields. This appears to be a major concern of the KPAF as in 2013 they attempted to import equipment and spare parts from Cuba. Numerous other problems plague the KPAF, from poor pilot training to the possibility of a largely expired inventory of air-to-air (A2A) missiles (i.e. R-60MKs (AA-8 ‘Aphid’) and R-27Rs (AA-10 ‘Alamo’) were received in 1987).

The KPAF also operates larger ground-based air defence platforms, such as:

North Korea also possesses a formidable array of short-range air defence systems. These are not relevant to the discussion as their range is too limited to pose a threat to a B-1B operating in international airspace.

Understanding the Kill Chain[4]

The process required to intercept an aircraft can be broken down into various steps:

  1. Detect and identify the target;
  2. Acquire the target with fire control;
  3. Identify range and the target direction/angles, paint/illuminate (literally lit up with radar waves) the target for the missile;
  4. Launch the missile;
  5. Guide the missile onto the target;
  6. The missile detonates/impacts near the target;
  7. Observe the target, repeat chain if necessary.

For the target to be intercepted, every aspect of the chain must be followed and must be successful. It is a delicate process, and if any step is interrupted, the target is unlikely to be successfully engaged. The kill chain will be similar regardless of the method used to conduct the interception.

Intercepting the B-1B using S-200 Angara (SA-5 ‘Gammon’) for Interception

S-200 Battery
North Korean S-200 Battery (Onggodok) located on the East Coast [39°19’03” N , 127°20’04” E] – Dated May 25, 2015

We will now take a closer look at the possible engagement of a B-1B by an S-200 surface-to-air missile (SAM) battery. This was the only SAM system likely to be in range of the B-1B flight on September 23rd, though even that is in doubt. For the sake of argument, we will assume a B-1B and its fighter escort stray into this outer layer of North Korea’s air defence. Firing an S-200 would be North Korea’s best shot at a successful engagement against a B-1B, as fighter interception would take more time and have to contend with a US and/or South Korean fighter escort of vastly superior quality. An S-200 SAM battery consists of several components:

An S-200 SAM battery consists of several components:

  • 5N62 (‘Square Pair’) Engagement Radar;
  • SM-106 5P73 Launchers;
  • V-601P 5V28 (S-200) Surface-to-Air Missile.

However, this is not an exhaustive list as the S-200 can also draw on higher assets, such as early warning/intercept radars (ex. P-14 ‘Tall King’ or ST-68 ‘Tin Shield’), or share information along with an integrated air defence network. It must be noted that the S-200 was developed in the 1950s through 1960s with the intention of engaging high-altitude bombers like the B-52 Stratofortress. The heavy missile is not ideal for engaging smaller and more manoeuvrable targets, particularly near its maximum range. The S-200 battery requires a constant feed of range and azimuth data to guide the missile onto the target and uses the 5N62 Engagement Radar to accomplish this task. Once the B-1B has been painted, the SAM battery can attempt to engage it.[5]

US aircraft are equipped with radar warning receivers (RWR), such as the ALQ-161A on the B-1B, that can detect radar emissions and alert the pilot. The pilot can then perform various actions (‘defending’) to attempt to break the lock. The most obvious of these is taking evasive action, but countermeasures such as chaff (small pieces of plastic and fibre with a conductive coating), jamming (providing false signals at the specific frequency used by the radar), and towed decoys (mimics the appearance of the parent aircraft) can also be employed.

Additionally, the S-200 has a poor record of target interceptions. On March 24th, 1986, Libya fired at least four S-200 missiles against two F-14 Tomcats when they were 40km off the Libyan coast. All of them missed their targets, and the engagement radar was destroyed by an AGM-88A High-Speed Anti-Radiation Missile, rendering the S-200 battery inoperable. In March 2017, Israeli aircraft launched airstrikes in Syria and were targeted by an S-200 battery, escaping unscathed.[6] In fact, the authors were unable to find a single example of a successful S-200 interception in a combat environment. In summary, the chance of an S-200 successfully downing a B-1B or its fighter escort is very low. The system was simply never designed to engage these types of aircraft effectively.

On September 23rd, the kill chain did not proceed past the first stage. According to Yonhap, the South Korean National Intelligence Service claimed that ‘North Korea did not take any immediate action in response to US’s strategic bombers’ flight.’ A member of the US intelligence community (IC) reached out to the authors and stated that the North Koreans picked up the flight on their early warning radars, but not engagement radars and that seemingly no alerts were sent to any airfields or SAM batteries. The source was unsure of the reason why the North Koreans did not send out alerts, and suggested possibilities varying from confusion/incompetence to a willful decision not to notify air defence assets. Ultimately, the North Koreans were either unable to acquire the B-1B flight with their engagement radars, or decided not to escalate the situation further by doing so.

As an aside, it is worth noting that the eastern S-200 battery’s (Onggodok) engagement radar was no longer present on the newest Google Earth imagery (October 19th, 2015), and was still missing as of May 5th, 2017. The US IC source stated it was likely just routine relocation training, and that there is another S-200 battery located on the east coast. Unfortunately, the authors could not confirm if the new site has the engagement radar, or if the battery was even operational during the September 23rd flight.

Intercepting the B1B using MiG-29 9.13s ‘Fulcrum’ for Interception

KPAF Mig-29
A KPAF MiG-29 unit being visited by Kim Jong-Un. (Source: Unknown)

The same Yonhap article notes that North Korea has moved additional aircraft to the coast, and CNN claims that they are MiG-29s. A ‘best case’ example of MiG-29 9.13s equipped with R-60MKs and R-27Rs will be used as this is the most capable A2A combat system in the KPAF inventory. North Korea only has around six of these MiG-29 models.[7] If the MiG-29s are fully combat loaded, they only have a 180km combat radius. This can be extended to ~276km with the use of a drop tank. Additional drop tanks can be fitted, but the MiG-29 9.13s would have to forgo the R-27R medium-range A2A missiles that would be critical to a successful interception.[8] Given the locations of North Korean airfields in the eastern part of the country, the MiG-29s would have only slightly more reach than the S-200 battery at best, and would just have one brief shot at the interception before needing to return to base. Additionally, the intercepting MiG-29s would likely not have time to engage with the US and/or South Korean fighter escort. For the sake of argument, the assumption will again be made that a B-1B flight comes within range of fighter interception.

Using aircraft to intercept the B-1B would follow the same general kill chain as mentioned for the S-200. First, the B-1B would need to be detected. This could be done with early warning radar before scrambling the MiG-29s to intercept. KPAF fighters could also be assigned to patrol the airspace around-the-clock, with ground radar assisting the aircraft in attempting to detect the B-1B. The latter is an unlikely option given the limited range of the MiG-29 and is demanding on the aircraft as well as the pilots. There may also be a significant delay between detection of the B-1B and the scrambling of aircraft. The MiG-29s would likely be detected by US or South Korean early warning assets in the region, which would communicate an advanced warning to the B-1B. It could use this time to leave the area, putting an end to the interception. However, if the B-1B is identified and does not leave the area, the MiG-29s still need to acquire it visually to engage with infrared missiles (R-60MKs) or on the radar to engage with radar-guided missiles (R-27Rs). Once again, countermeasures could be deployed, and evasive manoeuvres could be taken to defeat the missiles.

landscape-1504206649-36755613416-05fc74a29d-k
US Marine Corps F-35B Lightning II stealth fighters assigned to the Marine Corps Air Station Iwakuni, Japan, fly alongside 2 US Air Force B-1B Lancers assigned to the 37th Expeditionary Bomb Squadron, deployed from Ellsworth Air Force Base, South Dakota, over waters near Kyushu, Japan, Aug. 30, 2017, and 2 Koku Jieitai (Japan Air Self-Defense Force) F-15J fighters. Source: US Pacific Command)

If fighters are escorting the B-1B, as was the case on September 23rd, they could intercept the MiG-29s. This would put the escorting fighters at risk. However, it must be made clear that even if the interception were conducted by the best KPAF fighters available (MiG-29 9.13s) using the best KPAF A2A missiles available (R-60MKs and R-27Rs), they would still be at a large disadvantage against US and South Korean aircraft. The countermeasures and missiles are both inferior at the least. For example, the R-27R relies on semi-active guidance, meaning the parent aircraft must keep its nose pointed at the target and maintain a lock with the onboard radar until impact.[9] By contrast, the AIM-120 AMRAAM used by US and South Korean fighters can be fired at an extended range, and course corrected using data from the parent aircraft without the need to keep the MiG-29 painted with radar. The pilot of the MiG-29 would not be alerted by their RWR that a missile was inbound until the AIM-120 reaches its terminal phase, providing little warning of its approach. This gives the US, or South Korean pilots added tactical flexibility over their North Korean counterparts. Any lesser aircraft in the KPAF inventory, such as MiG-23MLs ‘Flogger,’ would be even further disadvantaged.

Conclusion

The possibility of a successful interception of a B-1B operating in international airspace off the coast of North Korea cannot be disregarded entirely. However, the limited reach of North Korea’s air defence, the advanced age and limited capabilities of the systems theoretically in range, and the array of defensive options available to the air forces of the US and South Korea would pose a nearly insurmountable challenge. The high chance of failure (and by extension embarrassment), the possibility of instigating a regime-ending war, and negligible benefits of successfully downing a B-1B leads to the conclusion that North Korea is unlikely to carry out this threat. This is particularly true when North Korea has much more reliable and effective means of provocation, such as continued ballistic missile and nuclear tests.

Justin Pyke obtained his MA in Military and Intelligence History from the University of Calgary in 2016. His main research interests include the Asia-Pacific War, military and politics of Imperial Japan, and the development of air and naval power in the inter-war period. He can be found on Twitter at @CBI_PTO_History.

Header Image: A B-1 Lancer performing a fly-by during a firepower demonstration, c. 2004. (Source: Wikimedia)

[1] Special thanks to Samuel Stadem, air power enthusiast and current chemistry graduate student at the University of Minnesota Duluth, for providing assistance with the finer points of modern military aviation.

[2] Tony Cullen and Christopher Foss (ed.), Jane’s Land-based Air Defence, 5th ed. (Surrey: Jane’s Information Group, 1992), pp. 261-62, 264.

[3] Richard D. Fisher Jr., ‘North Korean KN-06 Test Confirms Similarity to Chinese and Russian Fourth-Generation SAMs,’ IHS Jane’s Defence Weekly, 53:22 (2016).

[4] Robert H.M. Macfadzean, Surface-Based Air Defense System Analysis (Norwood: Artech House, 1992), pp. 39-63.

[5] Cullen and Foss, Jane’s Land-based Air Defence, pp. 263-64.

[6] The Syrians claimed that they shot down one aircraft and damaged another. However, no evidence has been presented and the burden of proof lies with Syria.

[7] Yefim Gordon and Dmitriy Komissarov, Soviet and Russian Military Aircraft in Asia (Manchester: Hikoki Publications, 2014), pp. 265-89.

[8] Yefim Gordon, Mikoyan MiG-29, trans. Dmitriy Komissarov (Hinckley: Midland Publishing, 2006), pp. 341, 377. The drop tank combat radius was extrapolated from the given range and combat radius values. The internal fuel capacity gives a 900km range and 180km combat radius, providing a ratio of 5. The given range on one drop tank is 1,380km. Dividing this by 5 results in a 276km combat radius.

[9] Gordon, Mikoyan MiG-29, pp. 364-65, 487-88.

#AirWarBooks – Dr Michael Molkentin

#AirWarBooks – Dr Michael Molkentin

By Dr Michael Molkentin

Editorial Note: In the third instalment of ‘Air War Books,’ Dr Michael Molkentin discusses the ten books that have influenced and shaped his writing as an air power historian. If you are interested in contributing to this series or From Balloons to Drones more generally, find out how here.

After I wrote to Dr Ross Mahoney enthusiastically agreeing with several of his choices (always a bad idea!) and suggesting a few others, he promptly invited me to contribute my own ‘Top 10’. I had been saying I would write something for Balloons to Drones for a while and so now he had me cornered. What follows is a list of titles that have had a significant impact on the way I research and write aviation and air power history. As these titles clearly indicate, my area of interest primarily concerns the pre-Second World War period (military and civil) and the people and ideas, rather than the technology, of aviation. 

Denis Winter, The First of the Few: Fighter Pilots of the First World War (London: Allen Lane, 1982). Denis, unfortunately, went on to write a scandalously bad book on Haig that damaged his reputation as a historian. But before that, he produced a couple of genuinely very good ‘face of battle’ type histories of British servicemen in the Great War (the other being Death’s Men). I found The First of the Few in my high school library and later used it as a model for writing my honours thesis on Australian airmen in the Great War. It is a bit dated, relies almost entirely on published accounts and some of Winter’s statistics do not stand up to scrutiny. But it is what got me interested in the subject and stands as the best personal experience study of British airmen in the Great War. I had the pleasure of meeting Denis in Canberra in 2004. He was a kind and gracious man and, when I showed him my work, he encouraged me to keep writing.

Richard P. Hallion, Taking Flight: Inventing the Aerial Age, from Antiquity Through the First World War (New York: Oxford University Press, 2003). I might have included any of Richard’s numerous books on air power (Strike from the Sky, his history of ground attack is a close second) but this has probably been most useful and influential in my work. It is a model of highly readable, yet meticulously researched history. It is international in scope and provides some valuable analysis of the complex ways in which aviation emerged as a practical reality, in various parts of the world, before 1914.

S.F. Wise, The Official History of the Royal Canadian Air Force, Volume 1: Canadian Airmen and the First World War (Toronto: University of Toronto Press, 1980). Wise’s first volume of the Royal Canadian Air Force’s official history is, in my view, the best single volume history of British air power in the Great War. The ubiquity of Canadians in the British flying services (over 20,000 served) means that Wise needed to cover all aspects of air power in the conflict – maritime aviation, strategic bombing and home defence, army cooperation and even some brief surveys of the RFC/RAF in secondary theatres. While some of his conclusions about the conduct of the war on the Western Front have dated, in the main his conclusions stand and are thoroughly grounded in archival sources. My PhD thesis and the book that followed it used Wise’s book as a model to examine Australia’s part in the air war from political, strategic, operational and tactical perspectives.

E.R. Hooton, War over the Trenches: Air Power and the Western Front Campaigns 1916-1918 (Hersham: Midland Publishing, 2010). I have mixed feelings about his book. On the one hand, it makes a significant contribution to our understanding of air power on the Western Front by conducting a multi-force (French, German and British) analysis at the operational level- something nobody had previously attempted. Whereas previous studies of the subject have focused on the tactical level, Hooton uses a mass of statistical data (sorties flown, ordnance expended, losses, serviceability, etc.) to provide a much broader picture of how air power influenced the conflict and how its use evolved between 1916 and 1918. Unfortunately, the book is poorly written and (in the first edition at least) so badly type set that some of the data tables are almost unreadable. It is such an important contribution to the field: I only hope the publisher has the good sense to reissue a revised edition or that an aspiring PhD candidate will take his approach further.

John Buckley, Air Power in the Age of Total War (London: UCL Press, 1999). I am going to go with Ross here and say that, among the many air power surveys out there, this one is the best. It is clear, concise and, essentially for a book like this, gets the balance right between ideas and details. Giving his narrative cohesion is a compelling, convincing and delightfully ironic thesis: that total war first enabled air power but then, following the onset of the nuclear age, limited its functions.

Philip S. Meilinger, The Paths of Heaven: The Evolution of Airpower Theory (Maxwell AFB, AL: Air University Press, 1977). Besides Buckley, the other book I recommend students starting out in the field is Meilinger’s survey of air power thinking. It is a straightforward, textbook approach devoting a chapter to each of the twentieth century’s most influential air power theorists. It is not exactly a page turner but is absolutely essential reading for students of air power and a useful reference work to have within arm’s reach when writing.

Malcolm Cooper, The Birth of Independent Air Power: British Air Policy in the First World War (London: Allen and Unwin, 1986). Malcolm was one of the first scholars to use the Air Ministry’s declassified files after their transfer to the British National Archives (then the PRO) during his PhD candidature during the 1970s. Whereas accounts of British air power’s early days had, until then, been overwhelmingly focused at the tactical level (individual pilots, squadrons, Biggles, etc.), The Birth of Independent Air Power focuses on the topic at the political and policy-making levels. I do not agree with Malcolm’s conclusion that the Army’s use of air power was wasteful and unimaginative (neither does James Pugh in his excellent new book which provides a good update on aspects of Cooper) but much of what he says was vital in adding political context to the operational history of British air power from 1914 to 1918.

Alfred Gollin, The Impact of Air Power on the British People and their Government (Stanford, CA: Stanford University Press, 1989). I would give this to students not even interested in air power as a somewhat rare example of an academic historian writing in a clear, engaging style. Honestly, it reads like a novel but still manages to seamlessly incorporate excellent analysis. Gollin was an enormously talented historian and a shining example to those of us who actually want our work to have a readership beyond the academy and services.

John A. Lynn, Battle: A History of Combat and Culture (Boulder, CO: Westview Press, 2003). Lynn does not really deal with aviation or air power explicitly, but his approach to explaining warfare through the prism of culture is both novel and enlightening. In case study chapters ranging from Ancient Greek warfare to modern Islamic terrorism, Lynn demonstrates convincingly that we cannot properly understand military operations without considering the cultures that conceive and wage them.

Ian Mackersey, Smithy: The Life of Sir Charles Kingsford Smith (London: Little Brown, 1998). This is not only the best of the many biographies of Kingsford Smith; it is the best example of historical biography I have come across. Through impressively dogged detective work, Mackersey managed to track down a number of people who had known Kingsford Smith before his death six decades earlier. From them, he got oral history and private papers that shed light on hitherto unknown or mythologised aspects of his subject’s life. Ian wrote a page turner too: it is engaging, absorbing history. Ian, who sadly died a couple of years ago, was also a gentleman. When I was writing my book on the 1928 trans-Pacific flight, he generously shared manuscript material he had gathered from private collections in the US when researching his book.

Dr Michael Molkentin is an adjunct lecturer at the University of New South Wales and a teacher at Shellharbour Anglican College. He has a first-class Honours degree from the University of Wollongong and a PhD in History from the University of New South Wales. In 2014, the Australian War Memorial awarded Michael’s doctoral research the Bryan Gandevia Prize for Australian Military History. He specialises in the history of armed conflict with an emphasis on warfare in the British world and the development of air power. Michael has written three books, the most recent being Australia and the War in the Air (OUP, 2014).

Header Image: An RE8 of No 69 (later No 3) Squadron, Australian Flying Corps preparing to set out on a night bombing operation from Savy near Arras, 22 October 1917. (Source: © IWM (E(AUS) 1178))

#BookReview – Air Power in UN Operations: Wings for Peace

#BookReview – Air Power in UN Operations: Wings for Peace

By Dr Ross Mahoney

A. Walter Dorn (ed.), Air Power in UN Operations: Wings for Peace. Farnham: Ashgate, 2014. Figures. Tables. Notes. Index. Pbk. xxxv + 350 pp.

air-power-in-un-operations_cover_dorn_300x448_65k

The use of air power as a tool by state actors is a regular theme examined by historians and policy specialists alike. However, the use of air power by non-state actors, in particular, intergovernmental organisations, is a different matter, though depending on one’s perspective, the United Nations (UN) – the subject of this volume – can be viewed as either a state or non-state actor. In this volume, A. Walter Dorn, Professor of Defence Studies at the Royal Military College of Canada, has brought together an impressive line-up of scholars and practitioners to consider how the UN has used both kinetic and non-kinetic air power as a tool for peacekeeping operations. Indeed, the narrative of UN peacekeeping operations generates images of soldiers in blue helmets on the ground. However, as this book ably demonstrates, air power has been a vital element of UN operations since the creation of its first ‘Air Force’ in 1960.

First Phase Digital
A partial view of Luluabourg airport, showing some of the Swedish Saab J-29 jet planes which were placed at the disposition of the UN Force in the Congo (ONUC), c. 1961. Called ‘flying barrels’, the jets were manned by members of the Swedish Air Force, numbering some 40 pilots and maintenance officers.(Source: United Nations)

The book examines the use of air power by the UN since 1960 through to Operation UNIFIED PROTECTOR – the air operations over Libya by NATO in 2011, which enforced UN Security Council Resolutions 1970 and 1973. The book consists of 17 chapters split over six thematic areas: The UN’s First ‘Air Force’; Airlift; Aerial Surveillance; No-Fly Zones; Combat and evolving capabilities. The latter aspect looks at some of the challenges for the UN in the future. Indeed, by splitting the analysis into the themes mentioned above, Dorn et al. illustrate that UN air operations cover the broad spectrum of roles readily identifiable in modern air power doctrine: control of the air; attack; situational awareness and air mobility. It also ably illustrates the challenges and potential contradictions of ‘Ends’, ‘Ways’ and ‘Means’ in UN strategy and peacekeeping operations. As Dorn notes in his preface, ‘While peacekeeping is meant to de-escalate violence, it is sometimes necessary to use force to stop force.’ (p. xxvi). As such, to meet the ends desired by the UN – the cessation of violence between, states, groups or organisations – it is often necessary to utilise air power’s various capabilities to moderate and influence the behaviour of the parties involved. Therefore, air power offers a toolkit to try to support the enforcement of UN Resolutions. Indeed, as Robert C. Owen’s chapter on Operation DELIBERATE FORCE in 1995 (pp. 231-40) and Christian Anrig’s piece of Libya in 2011 (pp. 255-82) illustrate air power can be a useful tool in shaping behaviour. DELIBERATE FORCE ensured that the Bosnian Serbs complied with UN Resolutions and put the UN in a position to shape the Dayton Accords (p. 236). However, this, in itself, was only possible due to the technological changes, such as the emergence of Precision Guided Munitions, which allowed the multinational air forces involved in DELIBERATE FORCE to conduct a humanitarian war. Had the air forces involved been equipped with ‘dumb’ weapons then the diplomatic fallout from collateral damage would have, potentially, hindered the ends sought by the UN. Similarly, in 2011, air power offered the UN the means to apply military force to level ‘the playing field’ (p. 280) in defence of civilians during the Libyan Civil War. Furthermore, unlike in DELIBERATE FORCE, air power – as the means of applying military force – was the essential tool for both the UN and NATO because UN Security Council Resolution 1973 forbade the use of occupying forces in Libya. However, it should also be remembered that air power was not used in isolation and that it worked with naval forces and special operations teams to achieve the ends desired by the UN.

Importantly, this volume does not avoid discussing some of the challenges inherent in the application of air power by the UN. As with any forces it deploys, the UN is reliant on the support of its member nations to provide the ways and means to achieve its ends. At the time of publication (2014), the UN deployed around 200 to 300 aircraft to provide air support for peacekeeping missions (p. 283). Not only is relying on member states to willingly supply forces a risky strategy – but states tend only to support those missions viewed to be in its own interest – it is also costly as the UN pays for the use of lease of both military and civilian aviation assets to achieve its ends. Some of these challenges are considered in the final section of the book on ‘Evolving Capabilities’ (pp. 283-316).

drone in Bunia.jpeg
A United Nations unmanned aerial vehicle (UAV) at Bunia airport in the Democratic Republic of Congo. UAVs are used for surveillance purposes by the United Nations Organization Stabilization Mission in the Democratic Republic of the Congo. (Source: United Nations)

This fascinating book highlights the many challenges concerning the application of air power in the context of peacekeeping operations. It considers both some of the practical challenges of deploying air power into the theatre to the many diplomatic considerations that affect the use of air power as a policy tool for the UN. Clearly, air power is not always the answer; however, as part of a toolbox of political, diplomatic, economic and military means, air power can provide the ways to achieve the ends sought by the UN if applied correctly. Finally, it is worth reflecting that many of the lessons found in this book should not be considered as unique to the UN, but can also be applied to peace support operations undertaken by individual sovereign nations. Indeed, David Neil’s chapter of Unmanned Aerial Vehicles (pp. 147-64) highlights some of the regulatory challenges concerning their use, which are just as important to national air forces as they are for the UN.

This post first appeared at Thoughts on Military History.

Dr Ross Mahoney is an independent historian and defence specialist based in Australia. Between 2013 and 2017, he was the resident Historian at the Royal Air Force Museum, and he is a graduate of the University of Birmingham (MPhil and PhD) and the University of Wolverhampton (PGCE and BA). His research interests include the history of war in the twentieth and twenty-first centuries, air power and the history of air warfare, and the social and cultural history of armed forces. To date, he has published several chapters and articles, edited two books, and delivered papers on three continents. He is a member of the Royal Historical Society and is an Assistant Director of the Second World War Research Group. He is a member of the Royal Historical Society and an Assistant Director of the Second World War Research Group. He blogs at Thoughts on Military History, and can be found on Twitter at @airpowerhistory.

Header Image: A Mil Mi-8 helicopter of the United Nations Mission in South Sudan in Juba, c. 2013. (Source: United Nations)