#BookReview – Space Warfare in the 21st Century: Arming the Heavens

#BookReview – Space Warfare in the 21st Century: Arming the Heavens

By Squadron Leader Michael Spencer

Joan Johnson-Freese, Space Warfare in the 21st Century: Arming the Heavens. Abingdon: Routledge, 2017. Notes. Index. xx + 202 pp.

9781138693883

In this book, Joan Johnson-Freese, Professor of National Security Affairs at the US Naval War College, has written a comprehensive history of the development of US national policy for space security. In the preface, Johnson-Freese cited General John Hyten, the then Commander, US Air Force Space Command, as stating that, ‘if the United States is “threatened in space, we have the right of self-defence, and will make sure we execute that right.”’ (p. ix) The underlying driver that persists in twenty-first century US policy developments on space security, up to the publication of this book in 2017, is to be able to access and securely use space for its purposes independently and at the time of its choosing. The US also seeks to keep pace with the increasing number of space-faring nations and developments in space power projection.

The book’s title invokes visions of nations in the twenty-first-century posturing to exploit niche combat capabilities to project their influence into future confrontations into the common grounds located above the Earth that is the shared orbital domain. However, this book is a well-constructed guide that walks the reader through the process of US national policy development for space security. More specifically, the book logically describes to the reader the policy determinants for US national security and space security. It also considers the drivers adopted by the US government that has steered its space security interests and shaped attitudes and organisational responses to assert those interests in the shared space orbital domain in the early period of the twenty-first century. The book concludes with suggesting that US space security policy take the lead in providing a secure space domain.

Space is one of the domains used as a common ground to globally connect actors in activities that either permeates across the globe or are discrete interconnected nodes remote located around the world. Moreover, individual state actors wish to exploit that common ground to build compartments within it for their exclusive purposes. State actors will then seek to build systems to protect these compartments that inadvertently increase the congested, contested, and competitive character of the space domain. This also has implications for dependent capabilities, for example, the use of the electromagnetic spectrum for assured access to space systems that support state interests. The challenge for US policy development is to adopt mechanisms that can discriminate between a hostile act and an accidental on-orbit event and provide options for appropriate responses that will not further exacerbate the problems of congestion and inadvertently escalate the competition into an uncontrolled contest.

Chapter one provides a rolling history of the US government’s inaugural efforts in developing policy statements that injected space interests into national security policy. These were then elaborated further in the first dedicated national space policy and space security strategy. US policy-makers, along with many space-savvy actors, have accepted that in a globalised world, economic and national security have become critically dependent on space. However, space is increasingly complex, not regulated, and serves as a global common, which is a challenge for the security policy of individual nations.

Chapter two characterises the priority problems posed by the utility of the orbital space domain to security policy-makers. The characteristics of space activities in the global common fundamentally challenges the management of national security by individual nations. Space cannot be a physical extension to sovereign airspace. Additionally, space is increasingly more affordable and accessible to more state and non-state actors, and increasingly more critical to designs for public infrastructure and daily lifestyles. Although it is accepted that space is a globally shared common, it has become increasingly congested, contested, and competitive in the absence of robust regulation. The space domain is difficult to control, and this is a driver for significant space-faring nations to consider structuring military force options to help assure space access from adverse environmental effects, on-orbit accidents, potential future adversary actions.

Chapter three discusses the reasons why the US should make strategies for space security. The fundamental assumption made is that conflict in the common grounds is inevitable and that concern over the future capabilities of potential adversary nations in the space domain is an acceptable driver for the development of US space security strategy irrespective of the publicly announced intentions of other nations. Johnson-Freese postulates potential strategy developments in the US along the four separate themes. First, space dominance is essential to assuring US military/civilian capabilities. Second, the weaponisation of space is inevitable. Third, while space is essential to military capabilities, the government should seek to limit the militarisation of space, and finally, the US should promote the use of space as a sanctuary, in a similar analogy to the international cooperation for managing Antarctica. Irrespective of the strategic theme, all discussions conclude that space is the Achilles heel for military power.

161208-D-ZZ999-998
The Defense Advanced Research Projects Agency’s Airborne Launch Assist Space Access program is developing a much-less expensive way to routinely launch small satellites, with a goal of at least a threefold reduction in costs compared to current military and U.S. commercial launch costs. (Source: US Department of Defense)

In chapter four, Johnson-Freese discusses options for military roles that can be performed in and with space to assure space security with a focus on the separate roles and potential technologies for the military to deter, defend, and defeat an adversary in space. The challenge for military commanders is that space is not a logical extension of the air domain. This requires strategists and capability developers to recognise the need to understand the differences in science, technology, and costs. The conduct of warfare in the orbital space domain will be challenged by the definition and ethics of military endstates involving any on-orbit military actions. This is especially true of those legacy effects, such as orbital space debris and disruption to critical public infrastructure, which may endure, potentially, for many generations after a conflict has ended.

Whereas chapters one to four steps the reader through a logical process of understanding the outcomes for a space security strategy and deriving the necessary outputs, chapter five discusses the critical national stakeholders who are essential in putting space strategy into effect, and the support necessary to make it useful. The observation made is that the issue of space security has generated an industry for the pondering, pursuit, and procurement of new space applications by military, industry, aerospace think tanks, academia, and support research organisations. Thus, it is good to define a threat that can be used to justify the significant and long-term investments into space security.

Chapter six is a discussion on the impact of the newest space actors and their behaviours and attitudes towards space. Space access is no longer considered to be exclusive to government-run organisations in space-faring nations. Technology miniaturisation and reduced launch costs have democratised space access to allow non-state actors. Moreover, entrepreneurial investors have triggered a need for strategists to reconsider space as ‘New Space’ to be shared with new additional actors and an increased level of unexpected and complexity in space behaviours. Johnson-Freese refines the book’s premise to consider that access to is space is inevitable but that space warfare is not necessarily inevitable.

Chapter seven concludes the Johnson-Freese’s discussion on strategy development for US space security by highlighting the challenges of democratisation of space access and the globalisation of interdependent space users, both military and non-military. While it is difficult to define a policy for space warfare when a definition for ‘space weapon’ has not yet been universally agreed, space security is complex and might be better achieved under a multi-lateral cooperative arrangement between space-faring nations. While space warfare might serve to achieve a short-term goal, it may be better to appreciate that the more prolonged effects of destabilising the space domain will be detrimental to all space users. A continuously growing number of space users want evermore space-derived services driven by ever-evolving technological improvements that allow more space missions to be conducted near each other. However, this uncontrolled approach by separate nations to individually access the common grounds of the Earth space orbital domain must logically converge at a point where the risks of accidents or deliberate action on orbit must be considered as a likely determinant for future space security policy, and not necessarily a space warfare policy.

In conclusion, this book is well-referenced, and presented in a logical flow of clearly articulated thoughts, making it a useful study reference for strategic thinkers. Johnson-Freese, herself a noted specialist on the space domain, has consulted with subject matter experts from appropriate military and space industry organisations and think-tanks, and is supported by critical individuals typified by the international recognised experts such as Dr David Finkleman, who has served on numerous technical and scientific advisory and study boards for industry and the federal government and is a Fellow of the American Institute of Aeronautics and Astronautics.

Squadron Leader Michael Spencer is currently a serving officer in the Royal Australian Air Force (RAAF). He serves at the Air Power Development Centre in Canberra where he is involved in the analysis of potential risks and opportunities posed by technology change drivers and disruptions to future air and space power. His RAAF career has provided operational experiences in long-range maritime patrol, aircrew training, and weaponeering, and management experiences in international relations, project management in air and space systems acquisitions, space concepts development, and joint force capability integration. He is also an Associate Fellow of the American Institute of Aeronautics & Astronautics. The opinions expressed are his alone and do not reflect those of the RAAF, the Australian Defence Force, or the Australian Government.

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

Header Image: An Atlas V rocket carrying a Space Based Infrared System Geosynchronous Earth Orbit satellite for a US Air Force mission lifts off from Cape Canaveral Air Force Station, Florida, 19 January 2018. (Source: US Department of Defense)

Fearing a Space Pearl Harbor: Space Warfare, #highintensitywar, and Air Power

Fearing a Space Pearl Harbor: Space Warfare, #highintensitywar, and Air Power

By Dr Bleddyn E. Bowen[1]

Editorial Note: Between February and April 2018, The Central Blue and From Balloons to Drones, will be publishing a series of articles that examine the requirements of high-intensity warfare in the 21st Century. These articles provide the intellectual underpinnings to a seminar on high-intensity warfare being held on 22 March by the Williams Foundation in Canberra, Australia. In this article, Dr Bleddyn Bowen examines the place of space power in modern high-intensity warfare. In doing so, he discusses two competing astro-strategies and their applicability to air forces and the use of air power.

Introduction

Modern air forces cannot conduct precise and highly coordinated operations without the navigation and communications services provided by satellites. Proven in 1991, America’s space power-enabled military forces decimated Iraq’s massed conventional forces and turned a defeat into a rout as Iraqi troops abandoned their heavy weapons and dispersed. Other military forces have now emulated precision bombing and networked air interception capabilities. Space power integration within the military forces of China and Russia proceeds apace with their precision strike and sophisticated standoff area denial weapons.

It is inevitable that space power’s influence on the battlefield, as well as attempts to disrupt or disable satellite operations, will be a significant feature of high-intensity warfare. Deterrence failure would open up space to the trials of space warfare for the first time.[2] Satellite communications, intelligence, and navigation services are essential to the operation of modern warfare in all terrestrial environments, and in particular, enable the combat and logistical effectiveness of fifth-generation air forces. Air power in future wars will be increasingly shaped by the influence of space power upon terrestrial warfare.

Two astro-strategies encapsulate competing visions of space warfare: a Space Pearl Harbor and a Reserve strategy. Both centre upon when and where each side wants to unleash a precision-guided munitions (PGM) salvo from and against air and maritime forces as well as fixed bases. Such a PGM salvo is the tip of the spear that a fifth-generation air force provides.[3] Space warfare threatens to blunt or parry this tip that modern military forces have come to rely upon. This article examines these two astro-strategies that influence the employment of airpower. While both astro-strategies centre upon when and where either side wishes to exploit and deny the dispersing effects of space power on the battlefield, modern air forces have a crucial role to play in imposing and denying those dispersing effects of space power and have a critical dependency on space power themselves to function.

The Influence of Space Power

Space power enables aggressive air forces to reliably shoot what they see promptly and increases the efficiency at which they can operate. This imposes dispersing pressures on the opposing force because of the reliability of precision-strike weapons.[4] Unless the PGM can be intercepted, its launcher destroyed, or its space-based navigation crippled, the targets must hide or scatter. As well as imposing a dispersing influence on enemy forces, dispersion through space services allows friendly deployed forces to remain physically dispersed while retaining a networked ability to concentrate firepower in time and place. The exploitation, denial, and negation of the dispersing effects of space power is a critical operational dynamic for future high-intensity warfare.

The hard edge of Western military forces – deep and precise airstrikes conducted at long distances from home – cannot function without space power. Fifth-generation aircraft and the emergence of ever-more autonomous and remotely piloted aircraft increases the reliance of modern air forces on the communications, navigation, and intelligence provided by satellites. In future high-intensity warfare, the practice of air power seems to grow acutely dependent on possessing a command of space.[5] Naturally, then, satellites are logical targets in any future high-intensity conflict as part of a range of options to degrade a PGM salvo capability. Air forces can be a direct counter-space or anti-satellite capable service with the employment of air-launched suborbital-capable missiles and electronic warfare suites.

Without space systems, the modernised military forces that have dispersed lose their connectivity and become less effective and vulnerable to any massing and concentration of the opposing force. Early warning of enemy movements and a return to ‘dumb’ weapons make massing against a fifth-generation air force and modern ground forces no longer a suicidal option. This is the reason that space infrastructure is a lucrative target in modern warfare: space power makes vulnerable opponents scatter and hide while allowing smaller forces to stand up to larger massed conventional forces. Attacking the space power that supports this military advantage improves the odds against fifth-generation aircraft and their joint methods of warfare.

How and when should an opponent’s space infrastructure be attacked, then? Fears and confidence in the success of a first strike in space warfare, or a ‘Space Pearl Harbor’ may be over-blown but timing a coordinated space warfare campaign with operations on Earth and holding counter-space operations in reserve may be more difficult than anticipated. These opposing views of space warfare in a future great power clash dominate operational-level thought about space warfare.

Space Pearl Harbor Strategy

The phrase ‘Space Pearl Harbor’ gained traction following the publication of Donald Rumsfeld’s 2001 Space Commission Report. The Commission noted a potential threat to U.S. space systems in the form of a debilitating first strike from a near-peer adversary against its space systems. Striking space systems first is an attractive strategy from China’s point of view because it undermines America’s dependencies in long-range precision-strike capabilities. Reducing the speed and flexibility at which fifth-generation aircraft can be tasked, reducing their weapons accuracies, decreasing the ranges at which they can fire-and-forget, as well as hampering battle damage assessment, can improve the odds of strategic success for the People’s Liberation Army. The incentive to strike American space systems and risking a like-for-like retaliation may seem like a possibly acceptable cost given China’s disproportionately reduced dependence on space power for a Taiwan scenario.

Not only has China developed a credible suite of anti-satellite capabilities, but China has also begun to resemble the early stages of the space power-enabled military machine the United States had in 1991. A massed military force is slowly transitioning to a lighter and more lethal-per-platform professional force. Today, both China and America are developing longer-range precision strike and uncrewed weapons to counter increasingly sophisticated air defence and maritime denial systems. These increase the dependency on space power and its dispersing effects on oneself and the enemy.

In future high-intensity warfare fifth-generation air forces must consider their dependencies on space systems for various degrees of operational capability as area-denial, and anti-access (A2AD) capabilities increasingly seek to disable and disrupt space communications. A Space Pearl Harbor strategy is increasingly appealing for the United States – not only its potential adversaries. China’s Qu Dian system – its satellite communications, command and control, and intelligence-gathering capabilities – is a potential target for America. China and America may become the first two military powers with competing systems-of-systems and fifth-generation aircraft to fight each other, with space systems providing the backbone for all long-range military capabilities. Both military powers possess reconnaissance-strike complexes, have provided ample targets for each other in orbit and on Earth.

U.S. Navy intercepts malfunctioning intellegence satellite
Launch of the SM-3 missile that intercepted USA-193. (Source: Wikipedia)

A key calculation in the strategies of China and the US with their opposing precision strike complexes is how long naval and airborne forces could operate within one another’s A2AD zones to fire their PGM salvos and retreat to safety. Successful counter space operations – whether through soft kill jamming or hard-kill destruction of satellites – may provide more time for aircraft in an anti-access region as dismantling the space component of A2AD weapons reduces the effectiveness and reliability of a precision-strike complex. However, the United States is also thinking and acting along these lines. China’s ever-increasing space infrastructure provides more targets worth hitting for US and allied ASAT programs, especially as China itself intends to project the dispersing influence of space power-enabled terrestrial strike weapons across the Pacific.

There is a strong incentive therefore to an early strike against space systems for both sides to prevent fifth-generation aircraft from being able to reliably intercept enemy fighters and bombard targets on Earth’s surface. Doing so would undermine the opponent’s ability to launch a fully capable PGM salvo which requires reliable celestial lines of communication. Part of China’s A2AD plan for a war in the Pacific may require the targeting of US bases in Guam, the Philippines, and Japan, and is developing longer-range air-launched PGM capabilities to do so. Such deep PGM strikes resemble what Clausewitz called an attack on the enemy’s army in its quarters, which prevents the enemy from assembling at its preferred location and buys significant time for the assailant as the victim spends days assembling at a more rearward, safer, position.

Space power’s influence on fifth-generation air forces partly increases the value of the first strike against space systems, especially if it is to prevent an expeditionary force from arriving in theatre before other hostilities begin. A fifth-generation aircraft’s utility in future high-intensity warfare may be determined by what happens in orbit to a degree only glimpsed by fourth-generation aircraft. Losing a space warfare campaign may seriously undermine the long-range strike options available for fifth-generation air forces, as without some space systems aircraft could not even leave an airfield, let alone navigate to a specific target and reliably hit it with one-shot-one-kill reliability. In close combat operations, impaired space support may disable reliable close air support that small and dispersed land units have come to rely upon in Western armed forces.

However, this does not mean that a U.S.-China war will inevitably begin in space. For strategists, the discussion of when and how which satellites may be targeted in war is particularly thorny, and has no obvious answer, despite the benefits of striking space systems. Space power is pervasive and diverse in its functions and influences, and space infrastructure may be more resilient or redundant than a first strike strategy may anticipate. Surprise attacks may not produce the strategic results desired, and forces will be needed in reserve. Betting everything on a surprise attack and a debilitating first strike is the other aspect of the Pearl Harbor analogy that seems under-emphasised in such discussion. A surprise attack has no guarantee of success, and there are good reasons why strategists tend not to commit their entire force and war plan to the success of the opening shots. The Space Pearl Harbor strategy has its merits, but it is only one possible astro-strategy. The defender is not always so helpless, and not necessarily so strategically vulnerable to such attacks.

Reserve Strategy

Beijing must assault Washington’s celestial lines of communication that support the maritime and air forces that Washington must dispatch to aid Taiwan. The consequences of doing so, or failing to do so, results in the dispersing influence of space power being brought to bear on the side that manages to keep using space power and commanding space to a good enough degree.

A strike against space systems at the outset of hostilities or manoeuvres may not be necessary or inevitable because of the needs and conditions of the terrestrial campaign. If a terrestrial campaign requires complete surprise, an attack on space systems may give away the terrestrial attack and reduce its effect. Expecting space superiority for an air strike may tempt the opposing force to conduct an opening airstrike without space superiority – much like how Egypt’s land offensive in the 1973 Yom Kippur War took Israel by surprise because they did so without air superiority.

A simple incentive to use a reserve strategy is that its timing can be used to increase the terrestrial consequences of the loss of space support at a crucial time. America would have more incentive to wait until its forces are converging on Taiwan when China needs to gather more data from sensors ashore to increase its anti-ship missile hit probabilities – making this the opportune time to disable the Qu Dian system and launch a concerted American space offensive. This is seemingly risky, but if timed well, can create the crucial opening for amphibious reinforcements of the Taiwanese resistance by the US Navy and Air Force. If the Qu Dian system is neutralised too early, workarounds may have been deployed by the time American expeditionary forces arrive in-theatre.

The reserve strategy may be useful to as a responsive posture based on when the adversary is about to launch a PGM salvo, and that salvo in itself may be used only when enemy terrestrial forces have concentrated on Earth around a geographical point, such as Taiwan and its surrounding waters. Counterspace operations and point-defence systems can parry the blow of a PGM salvo, or at least deny the one-shot-one-kill potential feared in Chinese A2AD systems. Indeed, the best time to deny Chinese A2AD systems is when the Chinese are counting on them to work at a crucial time of their choosing. This approach, however, may require a risk appetite that is now alien to the leaders of Western air and maritime forces.

WGS9 LAUNCH
The US Air Force launches the ninth Boeing-built Wideband Global SATCOM satellite at Cape Canaveral Air Force Station, Fla., March 18, 2017. Such satellites play an integral part in the strategic and tactical coordination of military operations. (Source: US Department fo Defense)

Space power and air power are not immune to strategic logic. The abstract and absolutist nature of a Space Pearl Harbor assault on space systems is feared and has triggered thought and planning on mitigating the damages of such an attack on both sides. Mitigating the risks of a decisive blow from above in space follows a classic logic of strategy. Space systems may be more resilient than some assume. Terrestrial mitigation measures to parry the blow of a PGM salvo may decrease the need for excessive and pre-emptive counter-space operations. Fifth-generation aircraft may have a significant role as interceptors of long-range A2AD platforms and projectiles to protect the heavy-hitting destroyers and carriers as they approach a point of geographic interest and increase their risks of taking on damage. There may be an incentive not to shoot at or disrupt satellites first if one side thinks they can weather successive rounds of PGM salvos and exhaust the enemy’s supply of PGMs while retaining the ability to meet the objectives of the campaign in the aftermath. Space warfare and astro-strategy in a Taiwan scenario should – in part – be subordinated to the needs of a terrestrial salvo competition, which is itself partly subordinated to the needs of the amphibious Taiwan campaign and its political objectives.

Conclusion

The proliferation of space power increases its usefulness in warfare. Therefore the payoff of counter-space operations also increases. This proliferation, however, does not necessarily result in reduced strategic stability, as the ‘use-it-or-lose-it’ mentality encouraged by the Space Pearl Harbor astro-strategy is not without its inherent strategic flaws as a surprise attack. Space weapons and anti-satellite operations may be held in reserve to coincide with a critical moment on Earth: joint operations must include space power, but space operations must also embrace the needs of terrestrial warfare. With the advent of fifth-generation air forces and the emergence of remotely piloted or autonomous reconnaissance and combat aircraft, the reliance of air power on space power will only increase. Future high-intensity warfare will witness competing systems-of-systems, and space warfare will play a frontline role as a method of parrying and blunting each side’s precise airborne spear tips as two high technology militaries exploit and impose the dispersing effects of space power.

Dr Bleddyn E. Bowen is a Lecturer in International Relations at the School of History, Politics, and International Relations, University of Leicester. Previously, he lectured at King’s College London and Aberystwyth University. Bleddyn is a specialist in space power theory, astro-politics, and space security, and has published in The Journal of Strategic Studies, The British Journal of International Relations, and Astropolitics, frequently contributes to blogs on space warfare, and has featured in the podcasts The Space Show and The Dead Prussian. Amongst other things, Bleddyn is currently working on his research monograph on space power theory and convenes the Astropolitics Collective.

Header Image: An Atlas V rocket carrying a Space Based Infrared System Geosynchronous Earth Orbit satellite for a US Air Force mission lifts off from Cape Canaveral Air Force Station, Florida, 19 January 2018. (Source: US Department of Defense)

[1] This article is based on research presented at the International Studies Association 2017 Annual Convention and will feature in a forthcoming monograph. Bleddyn E. Bowen. ‘Down to Earth: The Influence of Spacepower Upon Future History’, paper presented at ISA Annual Convention, Baltimore, February 2017.

[2] Bleddyn E. Bowen, ‘The Art of Space Deterrence’, European Leadership Network, 20 February 2018, https://www.europeanleadershipnetwork.org/commentary/the-art-of-space-deterrence/

[3] Mark Gunzinger and Bryan Clark, Winning the Salvo Competition: Rebalancing America’s Air and Missile Defenses (Washington, D.C.: CBSA, 2016)

[4] John B. Sheldon, Reasoning by Strategic Analogy: Classical Strategic Thought and the Foundations of a Theory of Space Power (PhD Thesis, University of Reading, 2005)

[5] Bleddyn E. Bowen, ‘From the sea to outer space: The command of space as the foundation of spacepower theory’, Journal of Strategic Studies, First Online, 2017 https://doi.org/10.1080/01402390.2017.1293531

Call for Submissions – From Balloons to Drones

Call for Submissions – From Balloons to Drones

Over the past two decades, airpower has become the “Western way of war” […] because it offers the prospect of military victory without large-scale destruction and loss of life. Airpower, however, cannot be decisive or even effective under all circumstances […] The utility of airpower is highly situational (emphasis added).

John Andreas Olsen[1]

From Balloons to Drones is an online platform that seeks to provide analysis and debate about air power history, theory, and contemporary operations in their broadest sense including space and cyber power.

Since its emergence during the First World War, air power has increasingly become the preferred form of military power for many governments. However, the application and development of air power are controversial and misunderstood. To remedy this, From Balloons to Drones is an online platform that seeks to provide analysis and debate about air power through the publication of articles, research notes, commentary and book reviews. From Balloons to Drones welcomes and encourages potential submissions from postgraduates, academics, and practitioners involved in researching the subject of air power.

Submissions can take the following forms:

  • ArticlesFrom Balloons to Drones publishes informative articles on air power that range from historical pieces to the analysis of contemporary challenges. These well-researched articles should attempt to bridge a gap between the specialist and non-specialist reader. They should be around c. 1,000 to 1,500 words, though From Balloons to Drones will accept larger pieces though we reserve the right to publish them in parts. References can be via footnotes and hyperlinks.
  • Air War BooksFrom Balloons to Drones publishes a series of review articles that examine the top ten books that have influenced writers on air power.
  • CommentariesFrom Balloons to Drones publishes opinion pieces on recent on a recent piece of news, either on a contemporary or historical subject. These are to be responses to such piece and should be no longer than c. 1,000 words.
  • Research NotesFrom Balloons to Drones publishes research notes related to contributor’s currents research projects. These take the form of more informal pieces and can be a discussion of a source or a note on a recent research theme. Unlike other pieces published by From Balloons to Drones, they can be written in the first person, though they can include references. These should be c. 500 to 1,000 words.
  • Book ReviewsFrom Balloons to Drones publishes occasional book reviews that aim to be an accessible collection of appraisals of recent publications about air power. If publishers are interested in having a publication reviewed then, please contact us via the email address below.

Submissions should be submitted in Word format. Also, please include a 50-100 word biography with your submission. However, if you are not sure if your piece fits our requirements, then please email us with the POTENTIAL SUBMISSION in the subject line. References can be used, and, given the readership of this site, please be careful to explain any jargon used.

If you are interested in contributing, please email us at airpowerstudies@gmail.com or use our contact page here.

Header Image: Chinooks celebrate the 100th anniversaries of Nos. 18(B) and 27 Squadron from RAF Odiham and 28 Squadron from RAF Benson. (Source: Defence Imagery, Mod)

[1] John Andreas Olsen, ‘Introduction – Airpower and Strategy’ in John Andreas Olsen (ed.), Airpower Reborn: The Strategic Concepts of John Warden and John Boyd (Annapolis, MD: Naval Institute Press, 2015), p. 2.

From Balloons to Drones: Contributors Wanted – We Want You!

From Balloons to Drones: Contributors Wanted – We Want You!

Since its launch in June 2016, From Balloons to Drones has published a variety of articles, commentaries, research notes, and book reviews dealing with issues related to air power history, theory and practice. However, to continue to develop and regularly publish material we need new contributors keen to publish on the subject of air power. As such, we need you!

From Balloons to Drones welcomes and encourages potential submissions from postgraduates, academics, and practitioners involved in researching the subject of air power. We seek to publish articles, commentaries, research notes, and book reviews that encourage a healthy discussion about air power from historical themes through to commentary on contemporary operations and challenges.

Air power is treated in its broadest sense and includes cyber and space power, and we are happy to discuss the suitability of any proposal for the site. We also encourage contribution from people working in the fields of strategic studies, law, politics, ethics, international relations, archaeology, and museology.

Submissions can take the following form:

  • ArticlesFrom Balloons to Drones seeks to publish informative articles on air power that range from historical pieces to the analysis of contemporary challenges. These well-researched articles should attempt to bridge a gap between the specialist and non-specialist reader. They should be around c. 1,000 to 1,500 words, though From Balloons to Drones will accept larger pieces though we reserve the right to publish them in parts. References can be via footnotes and hyperlinks.
  • CommentariesFrom Balloons to Drones seeks to publish opinion pieces on recent on a recent piece of news, either on a contemporary or historical subject. These are to be responses to such piece and should be no longer than c. 1,000 words.
  • Research NotesFrom Balloons to Drones seeks to publish research notes related to contributor’s currents research projects. These take the form of more informal pieces and can be a discussion of a source or a note on a recent research theme. Unlike other pieces published by From Balloons to Drones, they can be written in the first person, though they can include references. These should be c. 500 to 1,000 words.
  • Book ReviewsFrom Balloons to Drones publishes occasional book reviews that aim to be an accessible collection of appraisals of recent publications on the subject of air power. If publishers are interested in having a publication reviewed then, please contact us via the email address below.

Submissions should be submitted in Word format. Also, please include a 50-100 word biography with your submission. However, if you are not sure if your piece fits our requirements, then please email us with the POTENTIAL SUBMISSION in the subject line. References can be used, and, given the readership of this site, please be careful to explain any jargon used.

If you are interested in contributing, please email us at airpowerstudies@gmail.com

Header Image: A B-1B Lancer drops back after air refueling training, 30 September 2005. This B-1B, from the 28th Bomb Wing, deployed to Andersen Air Force Base, Guam, as part of the Pacific Command’s continuous bomber presence in the Asia-Pacific region. (Source: Wikimedia)