#Podcast – Interview with Dr Peter Westwick

#Podcast – Interview with Dr Peter Westwick

Editorial Note: From Balloons to Drones is pleased to announce our new podcast series. Led by our Editor Dr Mike Hankins, the series builds on the success of From Balloons to Drones, and provides an outlet for the presentation and evaluation of air power scholarship, the exploration of historical topics and ideas, and provides a way to reach out to both new scholars and the general public. You can find our Soundcloud channel here.

In this episode, we interview Dr Peter Westwick, Director of the Huntington-USC Aerospace History Project, about his new book Stealth: The Secret Contest to Invent Invisible Aircraft. We talk about the design process of stealth planes like the F-117 and B-2 at Lockheed and Northrop and answer the tough questions, like why did stealth research seem to be focused on California? What role did Russian research play in stealth development? And of course, how is Disney connected to all this?

You can find a review of Westwick’s book here.

Dr Peter Westwick is a research professor of history at the University of Southern California and Director of the Aerospace History Project at the Huntington-USC Institute on California and the West. He is the author or editor of several books, including Into the Black: JPL and the American Space Program, 1976-2004, which won book prizes from the American Institute of Aeronautics and Astronautics and the American Astronautical Society.

Header Image: The Lockheed F-117 Nighthawk stealth fighter flying over Nellis Air Force Base in 2002. (Source: US Air Force)

From Defence of the Baltic to the Airspace above Kosovo: The Transformation of the Royal Danish Air Force, 1989-1999

From Defence of the Baltic to the Airspace above Kosovo: The Transformation of the Royal Danish Air Force, 1989-1999

By Dr Søren Nørby

The 30th of May 1999 is an important date in the history of the Royal Danish Air Force (RDAF). On this day, Danish General Dynamics F-16s dropped bombs against a hostile target for the first time in its history. The target was in Serbia; a country located more than 1,500 kilometres from Denmark, and with which Denmark was not legally at war. Instead, what the RDAF participated in was a ‘humanitarian intervention’ that was supposed to stop a potential Serbian genocide in the province of Kosovo.

RDAF participation in the intervention against Serbia in 1999 was the end of a period fundamental transformations of the Air Force after the end of the Cold War. In this period, almost every aspect of the RDAF began to change – its doctrine, technology, and central mission. This article explores those changes by looking at the role of the RDAF during the post-Cold War conflicts in Yugoslavia between 1992-1995 and Serbia in 1999.[1]

In 1989, the RDAF was small but versatile. It consisted of more than 100 aircraft, a force of ground-based air defence centred around eight mobile missile batteries (I-HAWKs), seven large airbases, and a well-developed command-and-control-system that maintained a constant aerial picture of Denmark and the surrounding area. Its peacetime force was approximately 8,200 personnel, which could be increased to 17,500 in wartime. The RDAF was well integrated into NATO, and its main task was the defence of the western part of the Baltic Sea in case of an attack from the Warsaw Pact.[2] This was a role the RDAF undertook in conjunction with other NATO partners.

From ‘Peace-dividends’ to the Civil War in Yugoslavia

The fall of the Berlin Wall in November 1989 was one of the most momentous events in the modern history of the Danish defence policy. It prompted a shift away from the low-profile approach that had been the cornerstone of Danish policy since the end of the Second World War. In September 1990 the Danish government deployed the corvette, Olfert Fischer, as part of Operation DESERT SHIELD, the United Nations (UN) sanctioned military operation against Iraq, following the occupation of Kuwait. This deployment illustrated to Danish politicians that there was political capital to be gained from participating in such operations, far from Danish shores. At the same time, the Danish Defence Command, which coordinated and controlled the Danish military, realised that operations far from Denmark were a way to stay relevant and to avoid the hard cuts to the defence budget that some Danish politicians wanted, now that the enemy – the Warsaw Pact – had disappeared.

In 1992, the UN set up a peacekeeping force for the civil war in the former Yugoslavia. The Danish government decided to participate with approximately 940 soldiers – a large contingent by Danish standards. Initial problems with recruiting the needed number of soldiers resulted in a change in Danish military law that now stipulated that members of the Danish military were required to accept participating in missions outside Denmark’s borders. Approximately five per cent of the men and women employed by the Royal Danish Army, the Royal Danish Navy and RDAF chose not to accept this and left the military.[3]

In 1993, the Danish government strengthened the Danish contribution to the UN operation in Yugoslavia by deploying ten main battle tanks. Denmark thus became the first country to deploy such heavy weapons in a UN operation. When Danish politicians voiced concern that the deployment of the Danish tanks would be perceived as a dramatic escalation of UN involvement in the civil war in Yugoslavia, the Danish Armed Forces decided that the tanks should be painted white, giving them the nickname ‘The Snow Leopards.’

The deployment of Danish Leopard 1 tanks to the Former Yugoslavia in 1992 marked an important turning point in Denmark’s defence policy. (Source: Author)

Pressure from International Organisations

The RDAF was initially not deployed on the international stage, other than a single Lockheed C-130 Hercules, which in 1992 flew ten trips as part of the emergency assistance provided to the Yugoslav city of Sarajevo.[4] The pressure to change the RDAF contribution came from NATO, which had begun its transformation towards a smaller, but more flexible organisation, capable of faster response times. This process had already begun before the fall of the Berlin Wall, but it gained further momentum in the 1990s.

In 1991, NATO created two new forces: the Immediate Reaction Forces (IRF), capable of deploying within a few days, and the Rapid Reaction Forces (RRF) with a deployment time of a few weeks. Here the Danish government decided that that the RDAF’s Squadron 730 should be Denmark’s contribution to the IRF.[5]

The contribution of Squadron 730 to NATO’s IRF marked a shift in focus for the RDAF. During the Cold War era, NATO-planning envisaged that British and American squadrons would reinforce the RDAF.[6] NATO had planned to reinforce the RDAF with one Royal Air Force squadron of Hawker Harriers and two squadrons of SEPECAT Jaguars. United States Air Force (USAF) reinforcements were to consist of one squadron of McDonnel-Douglas F-15s, three F-16 squadrons, and one squadron of Republic A-10 Thunderbolts.

The 1990s, however, saw the RDAF shift to an expeditionary role whereby it contributed to the safety of others outside of Denmark’s borders. As such, the importance of making Squadron 730 available for NATO’s IRF cannot be overstated. Squadron 730 became the ‘flagship’ unit of the RDAF.

NATO’s involvement in the Civil War in Yugoslavia

In parallel with the above developments, during the first years of the 1990s, NATO became increasingly involved in the civil war in Yugoslavia. A UN ordered No Fly Zone had to be enforced by NATO, and in February 1994, this led to aircraft from the Alliance coming into action for the first time when US aircraft downed four Bosnian-Serbian fighter jets over Bosnia-Herzegovina.

A Royal Danish Air Force F-35 Drakken aircraft taxis into takeoff position during Exercise OKSBOEL ’86. (Source: Wikimedia)

On several occasions, the Danish government considered contributing Danish aircraft to NATO operations over Yugoslavia. Such a move was, however, hampered by Danish politicians, who in 1991 had decided to scrap all of the RDAF’s Saab Draken aircraft. This meant that the Air Force’s ability to perform close air support had been downgraded to the degree that meant that Danish aircraft was unfit to perform their intended tasks over Yugoslavia. Therefore, despite pressure from NATO, the Danish government had to decline NATO’s request to deploy Danish aircraft over Yugoslavia. This was embarrassing for the Danish government and meant an increased focus on the close air support task. This meant procuring new equipment, such as the Low Altitude Navigation Targeting Infrared for Night laser targeting pods (LANTIRN) that would eventually enable the RDAF’s F-16s to use precision-guided munitions (PGM). However, the acquisition and introduction of such equipment was a long process, and the LANTIRNs were not operational until 2001.

In the Line of Fire – Yugoslavia

On 29 April 1994, while the debate over a possible deployment of RDAF F-16s was ongoing, a Danish tank force became involved in combat operations against Serbian forces near Tuzla in Bosnia and Herzegovina. The Danish tanks were ambushed, resulting in a firefight lasting approximately 45 minutes. The episode was the first time since 1943 that troops under the Danish flag had fought in battle. While the Danes did not suffer any losses, the Bosnian Serbs subsequently acknowledged that they had nine killed and 15 wounded. The battle, known under the name Operation Bøllebank (Operation Hooligan Bashing), became just as important to the Danish military as the deployment of the Olfert Fischer four years earlier. It showed that Danish soldiers were ready to put military power behind international engagement and were able to fight.

Bøllebank also showed the soldiers, airmen and sailors in the Danish military that post-Cold War UN-operations were fundamentally different from the peaceful UN-missions that Denmark had participated in before 1989. It became clear to the Danish military that personnel deployed on such a mission could be called on to undertake combat operations. Finally, Bøllebank also illustrated a high degree of political and popular support for the Danish participation in the UN-operations, which subsequently helped to expand the Armed Forces’ maneuvering room in connection with these operations.[7]

RDAF Pressure for Change

During the 1990s the RDAF tried on numerous occasions to convince Danish politicians to deploy Danish planes to the civil war in Yugoslavia. This was driven by a fear that the RDAF’s lack of an international profile would make it difficult to secure funding for new equipment. The various professional heads of the RDAF in this period all wanted to make the entire Air Force deployable, including such elements as the Hawk missile system and radars. Following recommendations from the Danish Defence Command, Danish politicians decided to invest much money in new and more mobile equipment, and the RDAF’s Hercules and Gulfstream transport aircraft were equipped with, among other things, missile warning equipment to enable them to operate in dangerous areas.[8]

The RDAF also devoted resources to developing a Danish doctrine for the operational use of air power. The RDAF was inspired by USAF Colonel John Warden’s theories regarding the strategic use of air power, especially his 5-ring model of the enemy as a system. These ideas were used to set the direction for the development of the RDAF and to provide inspiration for how Danish aircraft could be used in the event of a conflict.[9]

From Operation DELIBERATE FORCE to Operation ALLIED FORCE

Following Operation DELIBERATE FORCE, the NATO air campaign over Bosnia and Herzegovina between 30 August and 20 September 1995, the civil war in Bosnia was stopped with the so-called Dayton Agreement. This peace deal ended a civil war that had cost more than 100,000 lives and driven more than four million people from their homes. Thanks to the deployment of a UN peacekeeping force of 60,000 personnel, Bosnia and Croatia have since been mostly peaceful.[10]

In the shadow of the civil war, however, another conflict lurked. Within the Federal Republic of Yugoslavia, which after 1995 consisted of Serbia and Montenegro, a significant minority of ethnic Albanians constituted much of the population of the southern Serbian province of Kosovo. The conflict between the ethnic Serbs minority and the ethnic-Albanian majority in Kosovo dated back hundreds of years but escalated in 1989 when Yugoslav President Slobodan Milosevic deprived Kosovo of the expanded autonomy enjoyed by the region since 1974.

During the 1990s, the political environment in Kosovo gradually grew worse, and by 1998 large parts of the province were no longer under Serbian control. The Serbian military and police, therefore, initiated a particularly hard-fought effort in Kosovo to restore control of the province – preferably by cleansing the province of ethnic Albanians.[11]

Among other things, because of the experience of the Srebrenica massacre in 1995, the world community could not let the Serbs pursue a campaign of ethnic cleansing in Albania. An American-led attempt to find a peaceful solution was therefore made, and the American diplomat Richard Holbrooke was given the task of trying to negotiate a solution.

Operation DETERMINED FALCON

To put pressure on the Serbian president, on 14 June 1998, NATO gathered a force of approximately 80 fighter jets from 12 countries. In Operation DETERMINED FALCON, these aircraft flew along the Serbian border and illustrated to the Serbian President that NATO was ready to use military power if the Serbs did not halt the ethnic cleansing in Kosovo.

For this operation, Denmark provided three F-16 aircraft (two plus one in reserve) at just two days’ notice. At 17:30 on 15 June 1998, Danish F-16s, together with a C-130 Hercules carrying support personnel and ammunition, flew to the Italian airbase at Villafranca. The next morning two Danish F-16s took part in the operation along the southern Serbian border to Macedonia and Albania. After a successful operation, the Danish aircraft returned to Denmark.[12]

During the summer of 1998, Richard Holbrooke managed to reach an agreement including the withdrawal of some Serbian forces from Kosovo. Whether DETERMINED FALCON played a role in that agreement or not is unclear.[13] However, the agreement did not last, and in September 1998, up to 300,000 Kosovo Albanians were once again on the run in Kosovo. These refugees threatened to destabilise the entire region and create a flow of refugees in Europe, such as those the world had witnessed during the 1997 collapse of Albania. The European authorities were very aware of this, and the European Union put much effort into stopping the Serbian cleansing of the ethnic Albanian population of Kosovo.

Towards Operation ALLIED FORCE

Concurrent with this process, NATO began planning a military operation. On the 8 October 1998, the Danish government made available six F-16s (four operational plus two reserve aircraft) and support personnel, totalling 120 men, for a NATO operation named OPLAN 10601 ALLIED FORCE. This operation was designed to compel the Serbs to return to the negotiating table and ensure that the Serbian forces left Kosovo by the 16 October.

One of the six RDAF F-16s deployed as part of Operation ALLIED FORCE in 1999. (Source: Author)

The Danish F-16s and most of the personnel initially came from Squadron 730. At the time, however, the RDAF had only 36 pilots with current operational experience on the F-16 aircraft. This figure included pilots serving at the RDAF headquarters as staff officers. The Danish contribution to ALLIED FORCE required six pilots in Italy, six on standby in Denmark and six for other operations, including those on leave at home in Denmark. The deployment thus required half of the RDAF’s available F-16 pilots. This problem was further exacerbated by the fact that all the deployed pilots had to be certified for the weapons systems that were expected to be used during the operation.

ALLIED FORCE, therefore, put much pressure on the entire fighter structure and operations of the RDAF. This pressure meant that all tasks that did not directly relate to air policing the skies over Denmark or ALLIED FORCE were discontinued. For example, among other things, Squadron 727 suspended the training of new pilots, while most of its pilots were deployed to Italy. In the long run, this would ultimately have an impact on the RDAF’s ability to meet its readiness level.[14]

Thanks to political and military pressure, in February 1999, it proved possible to persuade both representatives of the Kosovar rebel movement Kosovo Liberation Army and the Serbian government to initiate negotiations about the future of Kosovo. These took place at the French president’s summer residence at Chateau de Rambouillet, southwest of Paris. On the 18 March, however, it became clear that the negotiations would not lead to a deal, and with the negotiation options exhausted, NATO Secretary-General Javier Solana had no other options than on the 23 March to initiate Operation Allied Force. At 19:00 the following night, NATO began launching airstrikes against Serbian targets in Kosovo and Serbia.

The Danish Experience

RDAF F-16s participated in ALLIED FORCE from day one; however, the operation came at an unfortunate time. In addition to the aforementioned pilot issue, the RDAF was in the middle of a midlife update of its F-16s, and the number of operational aircraft was significantly reduced. Initially, the RDAF only had 14 F-16s capable of participating in the air campaign. This meant that the aircraft deployed during the air campaign worked up so many flight hours that had they operated in peacetime they would have had to be sent home to Denmark for inspection. To alleviate this issue, the RDAF’s Tactical Command issued exemptions from the rules to keep the aircraft flying.

For most of the air campaign, Danish F-16s operated in the defensive role. This was a necessary part of ALLIED FORCE. The Air Force of Yugoslavia – even though most of its fighter jets were of an older design – posed a potential threat to NATO had they chosen to resist the Alliance’s attack. However, after having lost four jets during the first days, the Air Force of Yugoslavia chose to keep most of its aircraft on the ground. Nevertheless, political demands from NATO-member states meant that approximately 33 per cent of Alliance aircraft were devoted to the air defence role against potential attacks by the Air Force of Yugoslavia.[15]

On these combat air patrols, Danish F-16s operated in pairs. Initially, their patrol zones were located over the Adriatic Sea, where the essential air tankers operated. As NATO became more confident that Serbian forces would not try to counter NATO operations, the patrol zones moved to the area over Albania and Macedonia and later also Hungary. This allowed the American jets, which had until then patrolled these areas, to be transferred to offensive operations.

Since Danish F-16 pilots were not equipped with night-vision-goggles, they were used in daylight operations. During one patrol over Kosovo, a Danish F-16 was fired at by a Serbian ground-to-air missile, which did not, however, successfully hit its intended target.[16]

Danish Offensive Air Power

While Danish F-16s primarily focused on the air defence role, in the final days of the air campaign, the RDAF aircraft became involved in offensive operations against Serbian targets.

The first Danish bombs were dropped on the 30 May. The details of the attack are still classified, but what is known is that the target was a radio mast in northern Kosovo and that the two F-16s each dropped six MK-82 bombs. From an altitude of 11,000 feet, the pilots visually observed the bombs hitting the target area. For the attack, the Danish planes used ‘dumb’ bombs. The primary reason for this was that it was not necessary to use a more expensive laser-guided bomb (LGB) on the target. Secondly, an attack with an LGB would have required ‘buddy’ lasing. This technique involved one aircraft illuminating the target with a laser and guiding the LGB, dropped from a second aircraft, towards the target. As well as the above, there was also uncertainty about which pilot was responsible for the bomb if it caused collateral damage. The RDAF, therefore, chose to use dumb bombs where there was no doubt that the Danish F-16s were fully responsible for weapons released.

According to one of the pilots involved in the 30 May attack, the target area had visible bomb damage before the Danish attack. The Danish bombs hit close to the target, but due to the uncertainty about the target’s condition before the attack, the military value of the attack was uncertain. For the RDAF, however, the attack was a significant event as it was the first time Danish aircraft had dropped bombs on an adversary.[17]

For the RDAF, its participation in ALLIED FORCE was a test of whether the Air Force had achieved the transformation that the leaders of the Air Force had wanted. The RDAF’s goal in the 1990s had been to create an air force capable of participating in an air campaign alongside its NATO-allies as well as executing the same type of missions as the USAF or the RAF. The RDAF’s conclusion following ALLIED FORCE was that this goal had not been met.

While participation in ALLIED FORCE was historic, with Danish aircraft bombing hostile targets for the first time in its history, the air campaign showed that the RDAF had fallen behind technologically when compared with Denmark’s NATO allies and especially the United States. The RDAF therefore, subsequently initiated a process to catch up with these technological deficiencies. Thus, ALLIED FORCE accelerated the RDAF’s transformation into an ‘expeditionary air force’ tailored for international operations.

A critical element of this transformation was a focus on precision-guided munitions to avoid collateral damage. The effect of participation in ALLIED FORCE was the acceleration in the acquisition of new equipment, such as LANTIRN, and ammunition for the Danish F-16s. When the RDAF deployed in support of US forces in Afghanistan following the terrorist attacks on the 11 September 2001, the Air Force’s technology level had been significantly improved.

Conclusion – From Defense of the Baltic to Global Reach

The transformation described in this article meant that the RDAF in 2000, compared with 1989, had been reduced by the following: a 50 per cent reduction in air stations; a 50 per cent reduction in fighter pilots; the number of Hawk squadrons had been reduced by 25 per cent; and the number of fighter aircraft in the RDAF inventory had reduced by 35 per cent. Similarly, the peacetime force had been reduced by 17 per cent to approximately 7,900, while the wartime force had been reduced by 26 per cent to 14,800. These cuts had not only hit the RDAF, but the overall number of personnel in the Danish armed forces had been reduced from 39,000 to 33,200, while the wartime force had fallen from 103,000 to 81,200.

The RDAF had, however, at the same time managed to survive the loss of the Warsaw Pact as its enemy, and had shown Danish politicians that improvements in the RDAF’s capabilities allowed it to participate in international operations far from Denmark. The lack of success in the skies above Kosovo in 1999 was therefore not seen as a failure for the RDAF but as evidence that the Danish politicians needed to spend more money on the Air Force in order to reap the benefits of participating in international operations. This policy eventually showed its merit during the air war over Libya in 2011-2012, where Danish F-16s dropped 923 bombs on Gadhafi’s military forces and showed that they were able to work closely together with the USAF and other allies – a prerequisite today for being on the front line during international missions.

Dr Søren Nørby is a researcher and lecturer at the Royal Danish Defense College in Copenhagen. He earned his PhD from Syddansk Universitet in 2018. He specialises in naval history and is the author of 25 books and more than 50 articles. For more information see www.noerby.net.

Header Image: Based on the experience of the operations over the former Yugoslavia during the 1990s, the RDAF underwent a number of critical transformations. One of these transformations was the introduction of new technologies to improve capabilities, such as the LANTIRN pod for use of on the F-16 that came into service in 2001. (Source: Author)

[1] This article is based on the author’s book Når Fjenden Forsvinder. Det danske flyvevåbens udvikling 1989 – 1999 (When the enemy disappears. The transformation of the Danish Air Force 1989-1999) (Odense, 2019).

[2] ’Fakta om Forsvaret 1990,’ København, 1990.

[3] Forsvarskommandoen, Ved Forenede Kræfter (Vedbæk, 2000), p. 210; H. Hækkerup, På Skansen. Dansk forsvarspolitik fra Murens fald til Kosovo (København 2002), p.. 103.

[4] ’Rapport fra Udvalget vedrørende forsvarets materiel’, København 1998, p. 164.

[5] Ringsmose, Danmarks NATO-omdømme. Fra Prügelknabe til duks (Dansk Institut for Militære Studier 2007), p. 19; ‘Årlig Redegørelse 2004’, København 2005, pp. 34-5.

[6] Ved Forenede Kræfter, p. 171.

[7] L. Møller, Det danske Pearl Harbor. Forsvaret på randen af sammenbrud (København, 2008), p. 57; R. Petersen, ’Den bedste ambassadør – civil-militære relationer og demokratisk kontrol i Danmark 1991-2011’ (Phd Thesis, Roskilde Universitet, 2012), p. 207ff; R. Petersen, ’Danske sneleoparder i Bosnien,’ Militært Tidsskrift, 2010; P.V. Jakobsen, Fra ferie til flagskib. Forsvaret og de internationale operationer (København, 2009), p. 9; P.V. Jakobsen, ’The Danish Libya campaign: Out in front in pursuit of pride, praise and position,’ Upubliceret artikel, 2016, p. 195; K.S. Kristensen, Danmark i krig: Demokrati, politik og strategi i den militære aktivisme (København, 2013), p. 38; L. From, ’Da et kampvognsslag ændrede danskernes syn på krig,’ Jyllands-Posten, 3 May 2015; ’Balkan har reddet det danske forsvar,’ FOV Nyhedsbrev 7/2002.

[8] S. Hartov and J.E. Larsen, Forsvarets fly efter 1945 (Flyvevåbnets Specialskole, 1995),  p. 36ff.

[9] John Warden III, The Air Campaign. Planning for Combat (Washington 1988).

[10] M.O. Beale, ‘Bombs over Bosnia. The role of airpower in Bosnia-Herzegovina’ (Thesis, USAF School of Advanced Airpower Studies, 1997), pp. 33-4; Christian Anrig, The quest for relevant air power: continental European Responses to the air power challenges of the post-cold war era (Maxwell, AL, 2011), p.. 32, 179; M. Juul and S.W. Nielsen, 12 år på Balkan (København 2004), p. 46; John Olsen (ed.), Air Commanders (Dulles, VA, 2013), p. 356ff; C. Axboe, Vi troede ikke, det kunne ske her – Jugoslaviens sammenbrud 1991-1999 (København, 2018), p. 227-53.

[11] Axboe (2018), p. 275.

[12] I. Daalder and M. O’Hanlon, Winning Ugly. NATO’s War to Save Kosovo (Brookings Institution Press, 2001), pp. 32-3; G. Schaub, Learning from the F-16 (København, 2015), p. 19ff.; M. Vilhelmsen, ’Operation Allied Force (AOF): Da Flyvevåbnet med voksent,’ Upubliceret. Vojens, 2010, p.. 2; ’Rapport vedr. dansk flyvevåben deltagelse i Operation Allied Force,’ 12 november 1999, B2-B3; Årlig Redegørelse 1998, pp.. 33-6.

[13] Nørby (2019), p. 131-7.

[14] Hammerkasterne: Historien om Eskadrille 727 gennem 50 Ar (Skrydstrup, 2005), p. 162-3; ’Flugten er stoppet – men stadig mangel på F-16 piloter,’ Berlingske Tidende, 7 May 1999; ’Rapport vedr. dansk flyvevåben deltagelse i Operation Allied Force,’ 12 November 1999, p.. B-11 og D-10. TTJ og ’F-16 planlægningsmøde vedr. evt. overgang til anvendelse af F-16 MLU i f.m. Flyvevåbnets deltagelse i Operation Allied Force,’ 8 March 1999.

[15] Olsen (2010), p. 233.

[16] Forsvarskommandoens Presse- og Informationssektion 2001, pp. 12-5.

[17] Schaub (2015), p. 10: Vilhelmsen (2010), pp.. 3-4; ’Danske jagere bomber Milosevic,’ Ekstra Bladet, 28. May 1999; T. Kristensen, Kysser Himlen (København, 2017), pp. 179-180.

#BookReview – No Fly Zones and International Security: Politics and Strategy

#BookReview – No Fly Zones and International Security: Politics and Strategy

Reviewed By Dr Peter Layton

Stephen Wrage and Scott Cooper, No Fly Zones and International Security: Politics and Strategy. Abingdon: Routledge, 2019. Tables. Illustrations. Notes. Bibliography. Index. Hbk. xi + 166 pp.

51yFbrZlPhL._SX313_BO1,204,203,200_

This is an excellent little book on no-fly zones. No Fly Zones and International Security is arguably the seminal work on the subject, but it may be on a subject whose time has passed. The book may be both the first word and the last on this particular type of air power operation.

No Fly Zones and International Security falls within the genre of strategic studies but does not use any particular theoretical framework. Instead, the authors opt to integrate history, current affairs, technology and the operational level of war into a most comprehensive analysis. In this process, the two authors bring a wealth of knowledge and experience having been involved with no-fly zone issues and their study for decades. Stephen Wrage is a Professor at the US Naval Academy and specializes in American foreign policy and strategies. Scott Cooper flew EA-6Bs for the USMC including in most of the no-fly zone operations this book explores.

No-fly zones are explained as seizing another country’s airspace and applying to the airspace specific rules and regulations. So understood, no-fly zones are a form of occupation more akin to naval blockades or maritime exclusion zones than to the placing of ground forces in another country. This means no-fly zones are somewhat out of sight both to the population of the country impacted and to the country employing them. Their impact on the domestic politics of either country is accordingly somewhat muted, making their lifting less pressing; they can continue for many years. No-fly zones are a way of exerting military pressure, but they do so in a quasi-benign manner that places the onus to escalate to direct conflict on the state whose airspace has been seized. No-fly zones are then a soft form of coercive diplomacy, a military power tool or method that lies somewhere between economic sanctions and war in the conflict continuum.

The book initially delves into the doctrine, nature, types, tactics, strategies, and ethics of no-fly zones. This provides the background necessary for in-depth analysis and careful assessments of the no-fly zones in Iraq, Bosnia, and Libya. The Iraq chapter covers mostly Northern and Southern watch; the former when labelled Provide Comfort I was where no-fly zones originated. The Bosnia chapter is more expansive, moving from the short-lived 1992-93 Operation Sky Monitor to the major air campaign over Kosovo in 1999. Libya is even more so with the no-fly zone only fleetingly appearing before turning into a significant military intervention albeit conducted almost entirely by air.

The inclusion of much more discussion than solely about no-fly zones in the Bosnia and Libya sections does highlight that the history of no-fly zones is somewhat meagre. On the other hand, including such information directly related to air power helpfully places no-fly zones into context. The three history chapters also end with a useful lessons learned section that nicely summaries the issues for busy people and policymakers.

The book’s last chapter looks forward to whether no-fly zones have a future. As part of this, it also discusses no-fly zones that could have happened in Darfur and Syria and explains why they were not implemented. This highlights that the relationship between no-fly zones and strategy is worth exploring.

The book is at some pains to not claim no-fly zones are a strategy instead of seeing them as ‘an option, a tactic or a tool.’ As such, they offer states a relatively low-cost way to ‘do something’ without becoming deeply involved while retaining the ability to modulate air operations as necessary and withdraw very quickly if needs be. This brings to mind Eliot Cohen’s 1994 comment that ‘[a]ir power is an unusually seductive form of military strength, in part because, like modern courtship, it appears to offer gratification without commitment.’

F-15C_during_Operation_Deny_Flight
A US Air Force McDonnell Douglas F-15C Eagle from the 53rd Fighter Squadron is met by maintenance personnel at Aviano air base, Italy, after a mission over Bosnia to enforce the No-Fly Zone on 1 June 1993. (Source: Wikimedia)

In terms of gratification, the book makes it clear that no-fly zones by themselves can achieve little; they need to be part of a much larger and aggressive joint campaign to have a decisive impact. In this, no-fly zones can realistically have no real strategic objective in and of themselves. At best, they can be a conflict management tool that freezes in place the status quo. At least so far, they have been used only in intra-state conflicts.

In intra-state conflicts, no-fly zones arose and have been used mainly for humanitarian protection purposes. This cuts back to the ‘do something’ imperative liberal states feel when the global media discerns significant human rights violations occurring. Since Iraq and then Afghanistan, military interventions by Western powers have become less appealing, but this has not made doing nothing in the face of genocide and mass atrocities suddenly attractive. States still feel a moral obligation, and under the Responsibility to Protect (R2P) norm, some international pressure, to respond. No-fly zones can signal an interest in an issue, but as the book makes clear, they do not in themselves prevent or stop humanitarian disasters.

R2P is starting to appear as a rather quaint notion of a gentler, kinder time. No-fly zones were an American idea carried out with allied support to mildly enforce particular Western rules, albeit the United Nations generally endorsed these. Rising great power China is unattracted to supporting such humanitarian interventions as they involve intervening against authoritarian governments mistreating their people. China under Xi Jinping is increasingly more likely to aid authoritarian governments than stop them committing human rights abuses as its endorsement of Syria’s Assad regime reveals.

Russia, the perennial troublemaker of the modern era, is similarly inclined. Indeed, had a Syrian no-fly zone been implemented, Russia would have been one of the nations it would have been directed against. No-fly zones may now simply be an anachronistic artifact of a liberal rules-based order that has crumbled.

The book concludes on a sombre note in arguing that the Russian use of surface-to-air missiles systems in the Donbass in shooting down Malaysian Airlines flight MH17 and 19 Ukrainian military aircraft created and then policed a no-fly zone, that has since been ratified under a cease-fire agreement. China has now extended this innovation by installing similar missile systems on its newly created islands in the South China Sea. There are now effectively no-fly zones above and for 12 nautical miles (the claimed territorial limit) around these new artificial constructs.

No-fly zones started out as a device associated with humanitarian protection during civil wars. They may now be morphing into a device whereby authoritarian states can make territorial land grabs.

No Fly Zones and International Security makes an outsized contribution to what is admittedly a small field and not just in terms of discussing no-fly zones. It is one of the few books discussing in a comprehensive, balanced, insightful and well-argued way the application of contemporary air power. The book offers much for military professionals, academics and all concerned with deeply understanding the business of applying air power in the modern world.

Dr Peter Layton is a Visiting Fellow at the Griffith Asia Institute, Griffith University. His PhD is in grand strategy, and he has taught on this at the US National Defense University. He is the author of the book Grand Strategy.

Header Image: A US Air Force EF-111 Raven from the 429th Electronic Combat Squadron flies over the Alps of Northern Italy while on a mission during Operation DENY FLIGHT in 1995. (Source: Wikimedia)

A Low-Cost Way to Defeat Adversaries? Israel and Air Power in the Second Lebanon War

A Low-Cost Way to Defeat Adversaries? Israel and Air Power in the Second Lebanon War

By Major Jared Larpenteur

At 9:05 am on 12 July 2006, Hezbollah initiated Operation TRUE PROMISE at the Lebanese-Israeli border. They kidnapped two Israel Defense Force (IDF) reserve soldiers and sparked the Second Lebanon War.[1] Israel restricted large ground operations and instead turned to the Israeli Air Force (IAF) to win the war for them. Over the next 34 days, the IAF carried out tens of thousands of sorties but failed to achieve the decisive result sought by Israel.

No stranger to conflict, Israel has fought for survival since the establishment of the country in 1948. From 1948 to modern day the IDF has undergone multiple transitions to keep its military in line with the modern battlefield. Some of these transitions came at the cost of extensive amounts of blood and treasure. Despite a relatively successful air campaign in the 2006 Second Lebanon War, Israel’s societal perspective led to paying a high cost to discover essential lessons regarding the importance of joint warfare on the modern battlefield.

Since 1982, the IAF had dominated the skies of the Middle East. However, by the 2006 Lebanon War, they had become accustomed to an uncontested environment and employment in the counter-insurgency environment. Leading up to the Second Lebanon War, two intifadas, the first from 1987-1993 and the second in 2000, drew the Israeli military away from high-intensity conflict.[2] The first intifada occurred in 1987 and made the IDF shift focus from manoeuvre warfare to riot control to handle massive civilian uprisings. The second intifada in 2000 saw more violent clashes including suicide bombings in Israeli territory resulting in over 135 Israelis killed.[3] The two intifadas prompted the IDF to transition to a more counter-insurgency approach to warfare but also degraded public opinion as the Israeli populace became war-weary. At the same time, Israel observed the United States use of a heavy air power approach during Kosovo in 1999 and the initial Iraq invasion in 2003 to help limit casualties.

Israel had developed an aversion to casualties but still faced instability within the region. According to Frans Osinga, Israeli military leaders came to see air power as ‘a low-cost way to defeat adversaries such as Hamas and Hezbollah.’[4] Adversaries like Hezbollah watched, adapted, and understood the power of the IAF. Hezbollah understood Israel’s transition and according to their leader believed ‘the Israeli Achilles heel was the society itself.’[5]  By 2006, Hezbollah planned for a future war with Israel under the assumption that Israel would rely on air power and limited ground forces to reduce the risk of casualties.

When Prime Minister Ehud Olmert, Chief of Staff General Dan Halutz (an IAF general), and Defense Minister Amir Peretz met shortly after the July 2006 abductions to discuss options their perspectives became apparent when they decided not to send a large ground force into Lebanon, but instead, rely on airstrikes and limited ground raids.[6] The resulting conversation led to Israel’s three political objectives: first, the release of the abducted soldiers to Israel unconditionally; second, stop the firing of missiles and rockets into Israel territory; lastly, enforce United Nations Resolution 1559, which pressured Lebanon to control Hezbollah, disarm militias, and secure its southern border.[7]

Fueling all fighters
An Israeli Air Force F-15I from No. 69 Squadron moves away after receiving fuel from a KC-135 Stratotanker over Nevada’s test and training ranges during Exercise RED FLAG 04-3 in 2004. (Source: Wikimedia)

On 12 July, mere hours after the war began, the IAF launched Operation SPECIFIC WEIGHT. This air campaign targeted Hezbollah’s rocket sites, runways at the Beirut Rafic Hariri International Airport, interdicted the Beirut-Damascus highway and attacked the al-Manar Television Station (a Hezbollah-operated media source).[8] General Halutz assumed that it would only take two or three days to achieve the objectives because of the effect of precision-guided munitions on specific targets. These specific targets carried the planning assumption that air strikes would damage Hezbollah, pressure the Lebanese government, resulting in the release of the captured soldiers, and strengthen Israel’s military deterrence.

Two days later, Israeli intelligence assessed the strikes as successful. This led the IDF General Staff to target the town of Dahiye, a southern Beirut suburb that housed Hezbollah’s headquarters. The General Staff believe that Dahiye would deliver a symbolic blow to Hezbollah represented the beginning of a change of focus. With the soldiers still unreturned, the strikes on Dahiye appeared to expand the war aims to cause damage and pain to Hezbollah.[9]

By the end of the war, the IAF had carried out 19,000 sorties, averaging 200 sorties a day. The IAF attacked around 7,000 targets to include Hezbollah command posts, bridges, traffic intersections, and rocket launchers. The IAF used 19,000 bombs and 2,000 missiles of which 35 per cent of the ammunition were precision-guided munitions. The IAF racked up more flight hours in the Second Lebanon War than during the Yom Kippur War.[10] Despite the air effort, Israel began to realise that the air campaign alone would not achieve their political objectives as Hezbollah continued to launch an average of 90-150 rockets into Israeli territory every day.[11]

On 12 July, shortly after the air campaign began and keeping with the limited ground force approach Israel deployed several special operation units to recover the two kidnapped soldiers instead of large manoeuvre force. However, the special operations units did not anticipate the resistance from Hezbollah, while the IAF remained primarily focused on its strategic objectives. The IAF never prioritised integration and support for the ground offensive. Major General Benjamin Gantz, commander of the IDF army headquarters, stated:

By exploiting the air war, we could have gotten in simultaneously in full force and taken over the entire area, cleansing it from within. But that would have required […] decisive ground-maneuver warfare, not the stage-by-stage operations that were ultimately executed.[12]

However, the IDF entered southern Lebanon under the assumption that the destruction of targets by the IAF placed significant effects on Hezbollah.

To circumvent the use of air power and draw the IDF into attritional warfare Hezbollah developed large bunker and trench systems in southern Lebanon that could protect its arsenal of 122mm Katyusha rockets from air strikes. Additionally, Hezbollah integrated bunker systems inside of villages, towns, and surrounding terrain to draw the IDF closer rendering air support useless. As stated by an IDF lieutenant in southern Lebanon, ‘[Hezbollah] have so many places to hide from the air strikes, so we have to send in the infantry. It can be dangerous.’[13] For example, the IDF found a bunker complex in southern Lebanon 40 meters underground covering an area of two kilometres, with firing positions, operation rooms, medical facilities, and air conditioning.[14]

As the reports of Hezbollah’s resistance flooded in, it became clear that Israel needed a more significant force to secure the established political objectives. In response, the IDF launched its first large-scale ground force on 17 July to seize Maroun al-Ras and was surprised by Hezbollah’s preparation and fighting skills. Despite the effort, Maroun al-Ras remained unsecured as Hezbollah successfully outmanoeuvred the IDF with integrated mortar, rocket, and anti-tank weapons.[15] The realisation that intelligence did not match the reality on the ground hit hard as the first of the IDF ground elements manoeuvred into southern Lebanon. With the limited ground approach, the IDF faced massive resistance from Hezbollah. One IDF officer stated, ‘We expected a tent and three Kalashnikovs, that was the intelligence we were given. Instead, we found a hydraulic steel door leading to a well-equipped network of tunnels.’[16]

With the reports of limited success, Olmert and Halutz decided to deploy the Israeli reserves on 21 July. Despite the call for the reserves, Halutz’s ground plan remained the same without a consolidated effort between the IAF and IDF to achieve military objectives that linked to national objectives. By 5 August, three weeks after the start of the war, the IDF had roughly 10,000 soldiers in Lebanon four miles from the border. By 8 August, Israel realised it had been pulled into what they wished to avoid, a large-scale ground operation with dozens of casualties.[17]

Despite the scale of air power involved, Operation SPECIFIC WEIGHT did not have the intended effect. It only impacted around seven per cent of Hezbollah’s military resources.[18] Hezbollah still maintained the ability to manoeuvre and fire rockets, the two captured IDF soldiers were never returned to Israel, and the Lebanese government had no more control over Hezbollah than they did at the start of the war on 12 July. What changed the war and resulted in some semblance of partial Israeli success was not the massive air campaign but the eventual ground offensive.

For the US Military, Operation SPECIFIC WEIGHT provides several stark and valuable lessons. First, air power alone cannot achieve decisive results. Air and ground forces must act together whether in counter-insurgency, large scale combat operations or as in 2006 when facing a hybrid threat. On the modern battlefield, the integration of air and ground elements become imperative for success to achieve military and political objectives.

Second, as air and ground power integrate the release authority for munitions should be delegated down to lower echelons. In the Second Lebanon War, the IDF General Staff held the release authority which created lag times in fires and medical evacuation procedures. These lag times directly led to friendly fire incidents and enhanced pressure from the enemy. For example, near the town of Bint J’beil, an IAF attack helicopter inadvertently fired on IDF ground forces during a firefight barely avoiding fratricide.[19] Additionally, Israel learned that integration of the air and ground domain requires extensive training. That training should entail calling for fire, air-ground coordination, and target acquisition.

Lastly, the use of air power in the targeting process should focus more on desired effects to achieve decisive results rather than the destruction of specific targets. In the targeting cycle, the IAF uses a quantitative approach that focuses on the destruction of specific targets, with the assumption that effects placed on the target will bring decisive results.[20] The US Air Force uses a qualitative effects-based concept which focuses on the desired effects rather than a specific target.[21] During the Second Lebanon War, the air campaign attacked specific targets such as bridges over the Latini River, known Hezbollah positions, TV stations, and Lebanese airfields, with the assumption that destroying these targets would have the intended effect of achieving decisive outcomes. However, once the ground forces arrived in southern Lebanon, it became apparent that destroying these targets did not have the desired effect.

Israel paid the price in blood and treasure to learn the hard lessons of integrating air power on a modern battlefield. The Second Lebanon War resulted in the death of 66 IDF soldier, $55 million in loss of infrastructure, and $443 million in loss of economic activity.[22] The Second Lebanon War shows the importance of understanding the effective use of air power and the need to integrate air power across all operating domains. Israel learned the cost of getting air power integration wrong in 2006. In 2019 the US must avoid such costly schooling.

Major Jared Larpenteur is an Infantry Officer in the United States Army and currently a student at the School for Advanced Military Studies (SAMS) at Fort Leavenworth, KS. He is a 2003 graduate of Louisiana State University with a BA in History and commissioned through the ROTC program. He has deployed to both Iraq and Afghanistan and has experience in mechanized and light airborne infantry units. He received his masters from Kansas State University in Adult Learning and Leadership. He can be found on twitter at @jlarpe1 or email at jlarpe1@gmail.com. Views are his own and not representative of DoD or the US Army.

Header Image: An Israeli Air Force General Dynamics F-16C Barak of No. 110 Squadron departs on a mission during the ‘Blue Flag’ exercise on Ovda Air Force Base, Israel, on 27 November 2013. (Source: Wikimedia)

[1] Amos Harel and Avi Issacharoff, 34 Days: Israel, Hezbollah, and the War in Lebanon (New York: Palgrave Macmillan, 2008), pp. 12–3.

[2] Intifada translates as ‘shaking off’ meaning grassroots resistance across the Middle East, see: Bethan McKernan, ‘Intifada: What Is It and What Would a Thrid Palestinian Uprising Mean for Israel and the Middle East?,’ The Independent, 7 December 2017.

[3] Giora Eiland, ‘The IDF in the Second Intifada,’ Strategic Assessment, 13:3 (2010), p. 31.

[4] Frans Osinga, ‘Air Strike’ in John Andreas Olsen (ed.) Routledge Handbook of Air Power (New York: Routledge, 2018), p. 102.

[5] Cited in Scott C. Farquhar, Back to Basics: A Study of the Second Lebanon War and Operation Cast Lead (Fort Leavenworth, KS: Combat Studies Institute Press, 2009), p. 7.

[6] David E. Johnson, Hard Fighting: Israel in Lebanon and Gaza (Santa Monica, CA: RAND Corporation, 2011), p. 56.

[7] The United Nations Security Council, ‘United Nations Resolution 1559.’

[8] Harel and Issacharoff, 34 Days, p. 86.

[9] Ibid., p. 100.

[10] Johnson, Hard Fighting, p. 62.

[11] Ibid., p. 65.

[12] William M. Arkin, Divining Victory: Airpower in the 2006 Israel-Hezbollah War (Maxwell Air Force Base, AL: Air University Press, 2007), p. 133.

[13] Benjamin S. Lambeth, Air Operations in Israel’s War Against Hezbollah: Learning from Lebanon and Getting It Right in Gaza (Santa Monica, CA: RAND Corporation, 2011), p. 51.

[14] Arkin, Divining Victory, p. 21.

[15] Johnson, Hard Fighting, p. 68.

[16] Uzi Mahnaimi, ‘Humbling of the Supertroops Shatters Israeli Army Morale,’ The Times, 27 August 2006.

[17] Farquhar, Back to Basics, pp. 15-7.

[18] Ibid., p. 14.

[19] Lambeth, Air Operations in Israel’s War Against Hezbollah, p. 51.

[20] Johnson, Hard Fighting, p. 33.

[21] US Air Force, Air Force Doctrine Document No. 1, Air Force Basic Doctrine (Washington DC: Department of the Air Force, 2003), p. 18.

[22] Raphael S. Cohen et al., Lessons from Israel’s Wars in Gaza, Brief: Summary of From Cast Lead to Protective Edge (Santa Monica, CA: RAND Corporation, 2017), p. 8.

The Rise of Armed Unmanned Aircraft – Part Two

The Rise of Armed Unmanned Aircraft – Part Two

By Dr Peter Layton

Editorial Note: In the second part of a two-part article, Dr Peter Layton explores the evolution of the armed unmanned aircraft from its first use in the Second World War through to the First Gulf War. The first part of this article can be found here.

In retrospect, during the Cold War, the dice were stacked against armed unmanned aircraft.  Improving aircrew survivability in a major war – the primary requirement – involved operating in a very hostile, sophisticated air environment in the presence of extensive jamming that could defeat the data links necessary to control unmanned aircraft. Furthermore, the computers, aircraft systems and onboard sensors needed to make such an aircraft work were all big, cumbersome, unreliable and costly. Even when cost was not an issue as in the case of Advanced Airborne Reconnaissance System project of the late Cold War, the unmanned aircraft designs ended up being very large, technically challenging, of doubtful effectiveness and somewhat inflexible in operation.

In the 1990s the stars radically realigned to favour armed unmanned aircraft. In the early 1990s, armed violence erupted in Yugoslavia. The conflict was slow paced with a need for protracted surveillance rather than episodic reconnaissance, but none of the existing systems seemed quite right. Manned aircraft lacked persistence while satellites had predictable orbits and known overhead times, could not easily be repositioned to survey new areas and were impacted by bad weather. Meeting the new requirements driven by the wars in the Balkans was however eased somewhat by the air environment now being permissive with little threat from air defences. In the winter of 1992, the US Joint Staffs and the Office of the Secretary of Defense initiated a quick reaction program for a long-endurance unmanned aircraft. First flight came within six months of contract award, and a year later the General Atomics Predator unmanned aircraft was in operations over Bosnia.

Seemingly quick, the Predator’s rapid entry into service exploited some 15 years of DARPA experiments, trials, partial successes and utter failures. The overall airframe design was point-optimised for the particular mission with a slender fuselage with pusher configuration, long sailplane-like wings, inverted V-tails and a ventral rudder. The engine was a horizontally-opposed, liquid-cooled, four-stroke, geared piston engine with a minimal frontal area that offered high power at a moderate rpm, very low fuel consumption and very low vibration. The Vietnam-era unmanned jet aircraft saved weight by not being fitted with an undercarriage but were difficult to launch and recover. Predator’s used a tall, lightweight fixed undercarriage that gave considerable ground clearance.  This design meant that the Predator had a maximum speed of only some 120kts, but they could loiter for almost a day flying at 70kts at an altitude of 12-15,000 ft. This performance was adequate – if not sparkling – for the new requirement for long persistence albeit useless for the earlier Cold War type missions where survivability was critical.

In design terms, the airframe and engine were skillful but somewhat primitive having more in common with the 1944 TDR-1 unmanned aircraft (see Part One here) than a 1990s military aircraft. The real innovations that addressed the big technological challenge – how to fly and operate an unmanned aircraft in combat for 24 hours or more without on-board humans – lay in the electronics. Computer advances now allowed dramatic increases in computing power, speed and reliability while communication advances connected the Predator literally to the world, changing everything.

Controllability was addressed using a purpose-built flight control computer more powerful than that used in the F-16 fighters of the time. This made the Predator stable in flight in all weathers and easy to control remotely especially during the problematic take-off and landing phases. Navigation was addressed using the satellite-based Global Positioning System (GPS). Earlier unmanned aircraft had significant navigation problems with Vietnam era aircraft often missing their planned target by some 10-12 kilometres. GPS was a real breakthrough that provided an off-board, ubiquitous, highly accurate navigation method. However, it was new communications technology that made armed unmanned aircraft practical.

Over its first few years of operational service, the Predator system took advantage of and was integrated into, the rapidly advancing online world. It broke away from being dependent on line of sight control with the fitment of high bandwidth satellite communication data links. This has made the armed unmanned aircraft both remarkably flexible and remarkably useful.

Remote Split Operations endowed remarkable flexibility. A small team at a forward airbase launched a Predator using a line-of-sight wireless link and then transferred control to operators located anywhere globally who used satellite communications links. These remote operators then flew the long-duration operational part of each sortie, changing crews throughout the mission as necessary. After the mission, the Predator was handed back to the small forward deployed team which landed the aircraft and turned it around for the next mission. This way of operating meant the forward team was small, requiring only very limited support and minimising the people and equipment needed to be deployed.

The second aspect – that of being remarkably useful – was made possible using modern communications technology that allowed data from the unmanned aircraft to be sent worldwide in near-real-time.

By the late 1990s, sensor technology had considerably advanced allowing relatively small high-quality daylight and night television systems to be made for an affordable cost. Moreover, these, when combined with a laser rangefinder and the onboard GPS navigation system, allowed an unmanned aircraft to now very accurately determine the location of the object being looked at. Such pictures and the position data though were of limited use if access to them had to wait for the aircraft’s return to base. Now with high-bandwidth satellite communication systems, full-motion video tagged with its accurate location could be sent to distant locations. Multiple users worldwide could access real-time imagery of events as they occurred.

The impact of this was that not just the aircrew controllers could see the video and make use of it. Now local land, sea and air commanders could have instant access to the imagery allowing more active command and control of assigned forces. High-level commanders and government ministers at home could also gain an appreciation of the tactical events unfolding. These live feeds from the world’s battlefield were compelling viewing; the term ‘Predator Porn’ was coined – you cannot take your eyes off it.

As importantly, imagery analysts and other exploitation specialists at locations worldwide could now bring their expert skills to bear to provide instantaneous advice on niche aspects to the complete command chain, including the operators controlling the Predator. The satellite communications links allowed many skilled people to be ‘onboard’ the unmanned aircraft flying in some distant theatre of operations, making its operations much more useful than a manned aircraft traditionally could be.

161208-F-YX485-100
A US Air Force MQ-9 Reaper awaits maintenance 8 December 2016, at Creech Air Force Base. The MQ-1 Predator has provided many years of service, and the USAF is transitioning to the more capable MQ-9 exclusively and will retire the MQ-1 in 2018 to keep up with the continuously evolving battlespace environment. (Source: US Department of Defense)

The final technological piece in the armed unmanned aircraft jigsaw came together with the fitment of air-to-ground weapons. On operations in the Balkans in the 1990s, Predator’s provided imagery that was used to cue manned aircraft to essential targets, so they could deliver weapons on them. This worked well but sometimes the manned aircraft were not readily available and hours might elapse before they were overhead. This delay meant that hostile forces could group and attack civilians or friendly forces before defensive measures could be taken.  To overcome this, lightweight, small-warhead Hellfire missiles were fitted to the Predators that could be fired by the remote aircrew controllers against time-urgent targets. The range of weapons that could be fitted greatly expanded in later Predator developments but the fundamental constraint of needing to be lightweight to allow the unmanned aircraft to fly long-duration missions remained. Manned aircraft were still necessary for the battlefield situations and targets that required large warhead weapons.

In the early part of the 21st Century, armed unmanned aircraft finally came of age. This occurred with the coming together of several factors. Firstly, in the operational circumstances of the time, the air environment was much less hostile allowing simple aircraft to survive and potentially undertake meaningful roles. Secondly, there was now a pressing operational need for persistent surveillance; a task manned aircraft were unable to meet. Thirdly, aircraft technology has sufficiently mature to allow an unmanned aircraft to be controllable, navigate successfully, carry suitable sensors and incorporate satellite communications equipment. Lastly, in the internet age, once a video stream was received anywhere, it could be sent worldwide to allow anybody with an authorised computer terminal to access and use it.

After more than half-century of development, the aircraft was the easy bit. It was the electronics onboard and overboard, the ground controlling equipment, the complex support base and the large numbers of skilled staff involved at every level that made the whole operation work. It was not surprising then that defence forces pivoted to talk less of unmanned aircraft and towards terminology such as Unmanned Air Systems. Predators and their ilk were a system of systems, mostly ground-based but with one element that flew.

Dr Peter Layton is a Visiting Fellow at the Griffith Asia Institute, Griffith University. His PhD is in grand strategy, and he has taught on this at the US National Defense University. He is the author of the book Grand Strategy.

Header Image: An MQ-1 Predator, armed with AGM-114 Hellfire missiles, on a combat mission over southern Afghanistan, c. 2008. (Source: Wikimedia)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

NORAD at 60

NORAD at 60

By Dr Brian Laslie

NTS
NORAD tracks Santa (Source: Author)

Editorial Note: This weekend, 12 May, the North American Aerospace Defense Command (NORAD), the Bi-National defense command between the United States and Canada (and yes, the same organization that tracks Santa every Christmas Eve) is celebrating its 60th Anniversary. As such, we here at From Balloons to Drones wanted to share a portion of the history of this unique organization. The following comes to you from the NORAD History Office and our Assistant Editor Dr Brian Laslie, who is also a historian at NORAD.

With the beginning of the Cold War, American defence experts and political leaders began planning and implementing a defensive air shield, which they believed was necessary to defend against a possible attack by long-range, manned Soviet bombers. By the time of its creation in 1947, as a separate service, it was widely acknowledged the Air Force would be the centre point of this defensive effort. Under the auspices of the Air Defense Command (ADC), first created in 1948, and reconstituted in 1951 at Ent Air Force Base (AFB), Colorado, subordinate US Air Force (USAF) commands were given responsibility to protect the various regions of the United States. By 1954, as concerns about Soviet capabilities became graver, a multi-service unified command was created, involving US Navy, US Army, and USAF units – the Continental Air Defense Command (CONAD). USAF leaders, most notably Generals Benjamin Chidlaw and Earle Partridge, guided the planning and programs during the mid-1950s. The USAF provided the interceptor aircraft and planned the upgrades needed over the years. The USAF also developed and operated the extensive early warning radar sites and systems which acted as ‘tripwire’ against air attack. The advance warning systems and communication requirements to provide the alert time needed, as well as command and control of forces, became primarily a USAF contribution, a trend which continued as the nation’s aerospace defence matured.

DF-ST-82-08601
Four US Air Force Convair F-106A Delta Dart fighters from the 5th Fighter Interceptor Squadron, Minot AFB, fly over Mount Rushmore, on 27 July 1981. (Source: Wikimedia)

As USAF leaders developed plans and proposed warning system programs, they became convinced of the logical need for extended cooperation with America’s continental neighbour, Canada. US-Canada defence relationships extended back to the Second World War when the two nation’s leaders formally agreed on military cooperation as early as 1940 with the Ogdensburg Declaration. These ties were renewed in the late 1940s with further sharing of defence plans in light of increasing Soviet military capabilities and a growing trend of unstable international events, such as the emergence of a divided Europe and the Korean War.

Defence agreements between Canada and the United States in the early 1950s centred on the building of radar networks across the territory of Canada – the Mid- Canada Line (also known as the McGill Fence), the Pinetree Line, and the famous Dew Line. This cooperation led to a natural extension of talks regarding the possible integration and execution of air defence plans. The Royal Canadian Air Force (RCAF) and USAF exchanged liaison officers and met at critical conferences to discuss the potential of a shared air defence organisation. By 1957, the details had been worked out, and the top defence officials in each nation approved the formation of the NORAD, which was stood up on 12 September at Ent AFB, in Colorado Springs, Colorado, home of the US CONAD and its subordinates, including USAF ADC. General Earl Partridge, USAF, who was both the ADC and CONAD Commander, also became commander of NORAD, and the senior Canadian RCAF official, Air Marshal Roy Slemon, who had been the critical Canadian delegate in most of the cooperation talks, became deputy commander, NORAD. Nine months after the operational establishment of the command, on 12 May 1958, the two nations announced they had formalised the cooperative air defence arrangements as a government-to-government bilateral defence agreement that became known as the NORAD Agreement. The NORAD Agreement and its associated terms of reference provided the political connections which would make possible the longevity of the Canadian-US aerospace defence relationship into the future years. The NORAD Agreement, with its requirement for periodic review, ensured flexibility to adapt to a changing defence environment as would be evident by the events that would soon face the fledgeling command.

NORAD Map 1960s

Within one year of its establishment, NORAD began the process of adapting its missions and functions to ‘a new and more dangerous threat.’ During the 1960s and 1970s, the USSR focused on creating intercontinental and sea-launched ballistic missiles and developed an anti-satellite capability. The northern radar-warning networks could, as one observer expressed it, ‘not only [be] outflanked but literally jumped over.’ In response, the USAF built a space-surveillance and missile-warning system to provide worldwide space detection and tracking and to classify activity and objects in space. When these systems became operational during the early 1960s, they came under the control of the NORAD.

In NORAD’s 60-year history, perhaps the most notable symbol of the command has been the Cheyenne Mountain Operations Center (CMOC), often referred to as simply ‘Cheyenne Mountain.’ This vast bunker complex, which became fully operational in 1966, sat more than 1,500 feet underground and consisted of 15 buildings, which comprised the central collection and coordination facility for NORAD’s global-sensor systems.

North-Portal_large
Entrance to Cheyenne Mountain Operations Center complex. (Source: Author)

Throughout the 1970s, the ballistic missile threat caused policymakers to reassess the effectiveness of the air defence system. This meant the potential demise of the arguments for enhanced traditional air defence and moved NORAD to focus on such challenges as an improved warning of missile and space attack, defence against the ICBM, and more significant protection and survival of command, control and communication networks and centres. This resulted in a reduction of the USAF interceptor forces and closure of various portions of the radar network. Modernization of air defence forces became a hard argument. Because of changes in US strategic policy, which had come to accept the concept of mutual vulnerability to ICBM attack, the need to spend about $1 billion a year on air defence was challenged. In 1974, Secretary of Defense James Schlesinger stated the primary mission of air defence was to ensure the sovereignty of airspace during peacetime. There followed further reductions in the size and capability of the air defence system. By the late 1970s, the remaining components – some 300 interceptors, 100 radars and eight control centres – had become obsolescent and uneconomical to operate.

Over the years, the evolving threat caused NORAD to expand its mission to include tactical warning and assessment of possible air, missile, or space attacks on North America. The 1975 NORAD Agreement acknowledged these extensions of the command’s mission. Consequently, the 1981 NORAD Agreement changed the command’s name from the North American ‘Air’ Defense Command to the North American ‘Aerospace’ Defense Command.

canyon-1
NORAD Commanders have even turned up in the funny pages! Here the NORAD commander, who bore a striking resemblance to actual NORAD commander General Laurence Kuter, briefs Steve Canyon (Source: Author)

The 1980s brought essential improvements for the aerospace defence mission. Again, NORAD demonstrated adaptability to meet these changes. In 1979, the US Congress ordered the USAF to create an air defense master plan (ADMP). The ADMP, modified and upgraded, became the US administration’s outline for air defence modernisation and the foundation for NORAD cost-sharing discussions between Canada and the United States. The modernization accords signed in 1985 called for the replacement of the DEW Line radar system with an improved arctic radar line called the North Warning System (NWS); the deployment of Over-the-Horizon Backscatter radar; greater use of USAF Airborne Warning and Control System (AWACS) aircraft; and the assignment of newer USAF aircraft, specifically F-15s, F-16s, and CF-18s, to NORAD.

The late 1980s witnessed another expansion of the NORAD mission. On 29 September 1988, President Ronald Reagan signed legislation that involved the US Department of Defense, and specifically NORAD, in the campaign against drug trafficking. The command’s role in this mission was to detect and track aircraft transporting drugs and then report them to law enforcement.

On 11 September 2001, terrorists hijacked four passenger airliners, two of which obliterated the World Trade Center, in New York City, while another shattered part of the Pentagon. One of the four aircraft crashed in Pennsylvania before hitting its target, apparently either the US Capitol or the White House. The event made it clear that attacks on the homeland would not necessarily come only from across the poles and oceans which buffered the North American continent.

In the immediate aftermath of the 9/11 attacks, NORAD began Operation NOBLE EAGLE. The purpose of this still-ongoing air patrol mission was to defend the United States against terrorist aggression originating from either within or outside the nation’s air borders. NOBLE EAGLE missions were executed primarily by the USAF First Air Force, a NORAD unit under the command of the Continental NORAD Region (CONR), located at Tyndall AFB, in Florida. By June 2006, NORAD had responded to more than 2,100 potential airborne threats in the continental United States, Canada, and Alaska, as well as flying more than 42,000 sorties with the support of USAF AWACS and air-to-air refuelling aircraft.

NOBLE EAGLE’s response has become institutionalised into daily plans and NORAD exercises through which the command ensures its capability to respond rapidly to airborne threats. USAF units of NORAD have also assumed the mission of the integrated air defence of the National Capital Region, providing ongoing protection for Washington, D.C. Also, as required, NORAD forces have played a critical role in air defence support for National Special Security Events, such as air protection for the NASA shuttle launches, G8 summit meetings, and even Superbowl football events.

In recognition of the changing threat environment of the post-9/11 world, the United States Department of Defense stood up, in October 2002, US Northern Command (USNORTHCOM) as a joint service command to execute the mission of homeland defense across all domains. With NORAD already executing the air defense mission of North America, it was a logical step to co-locate the headquarters of NORAD and USNORTHCOM in Colorado Springs, Colorado, and to retain a dual-hatted commander relationship between NORAD and the new US joint command.

As NORAD looked to the future, past threats re-emerged. In 2014, Russian long-range aviation and maritime activity reached levels not seen since the Cold War: more sorties, supported by more tankers, and more sophisticated linkages between air and maritime intelligence collection than ever before. This activity underscored an aggressive Russian military enjoying new prosperity, proficiency, and ever improving capabilities that had NORAD focused on the Russian Bear once more. NORAD’s three operational regions in Alaska, Canada, and the Continental United States, routinely responded to incursions by Russian long-range aviation aircraft entering the North American Air Defense Identification Zone (ADIZ) or the Canadian Air Defense Identification Zone (CADIZ).

norad

As NORAD celebrates its 60th this weekend, we here at From Balloons to Drones send a very ‘Happy Anniversary’ to both America and Canada and to the Command itself for providing 60 plus years of aerospace warning, control, and defense to the Homeland. We know that you have the watch!

Dr Brian Laslie is a US Air Force Historian and currently the Deputy Command Historian at North American Aerospace Defense Command (NORAD) and United States Northern Command (USNORTHCOM). A 2001 graduate of The Citadel and a historian of air power studies, he received his Masters’ from Auburn University Montgomery in 2006 and his PhD from Kansas State University in 2013. He is the author of Architect of Air Power: General Laurence S. Kuter and the Birth of the US Air Force (2017) and The Air Force Way of War (2015). The latter book was selected for the Chief of Staff of the Air Force’s 2016 professional reading list and the 2017 RAF Chief of the Air Staff’s reading list. He can be found on Twitter at @BrianLaslie.

Header Image: A USAF F-22 Raptor of the 3rd Wing escorts a Russian Air Force Tu-95 Bear bomber near Nunivak Island, c. 2007. This was the first intercept of a Bear bomber for an F-22, which was alerted out of Joint Base Elmendorf-Richardson’s Combat Alert Center. (Source: US Department of Defense Images)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.