2018: An Australian Space 2.0 Odyssey

2018: An Australian Space 2.0 Odyssey

By Squadron Leader Michael Spencer

These spacecraft are able to gather remote sensing information with radios and cameras, and are the sort of innovative space capability that can help meet many ground-based needs in ways that make sense for Australia. Because they have re-programmable software defined radios on board, we can change their purpose on the fly during the mission, which greatly improves the spacecraft’s functional capabilities for multiple use by Defence.[1]

Professor R Boyce, Chair for Space Engineering, UNSW Canberra (2017)

The Royal Australian Air Force (RAAF) and Defence Science Technology Group (DST) of the Australian Department of Defence have separately established partnerships with University of New South Wales (UNSW) Canberra which has resulted in a space program with one DST space mission already in orbit, one RAAF mission about to be launched. Additional follow-on missions are planned for each of RAAF and DST for launch in the near future. A combination of disruption in space technology, associated with ‘Space 2.0’ that makes space more accessible, and a commitment by UNSW Canberra to develop a space program, has delivered M1 as the first Australian space mission for the RAAF. These small satellite missions will provide research that will give a better understanding, for the current and future Defence workforce, of the potential opportunities for exploiting the space domain using Space 2.0 technology. As such, this article explores the move away from Space 1.0 to Space 2.0. While discussed in more detail below, broadly speaking, Space 2.0 relates to the reduced costs of accessing space and conducting space missions with commercial-off-the-shelf satellite components for lower-cost small satellites and mission payloads.

20170315unk0000000_008(1)
A lunch-box sized satellites (CubeSats) for the Buccaneer and Biarri space missions. (Source: Australian Department of Defence)

The objective of the ADF’s employment of the space domain is to support a better military situation for the joint force in operations planned and conducted in the air, sea, ground, and information domains. Currently, ADF joint warfighting operations are critically dependent on large and expensive satellites that are owned and operated by commercial and allied service providers. As such, a Defence-sponsored university program is currently underway to explore the potential benefits of employing microsatellites as a lower-costing option to augment the capabilities traditionally fulfilled by the large-sized satellites. Furthermore, orbiting space-based sensors can view much larger areas of the Earth in a single scan than are possible with airborne sensors. Thus, a space-supported force element can observe, communicate, and coordinate multiple force elements dispersed over large areas in multiple theatres of operations. Finally, the transmission of signals above the atmosphere enables better communications between satellites, performed over long distances over the horizon without atmospheric attenuation effects, to enable better inter-theatre and global communications.

In the twentieth century, space missions were only affordable through government-funded projects. Government sponsored organisations and missions continued to grow in size and their capabilities. In retrospect, government agencies and space industry now refer to these large-sized, expensive, and complex mission systems as ‘Space 1.0’ technology.[2] As national space agendas drove the development of bigger space launch vehicles able to carry and launch larger payloads with one or more large satellites, changes in government funding priorities away from space lift services began to stifle innovation in space technology which remained as high-end and expensive technology. Recently, in the twenty-first century, the large government agencies looked to commercial industries to find ways to innovate and develop cheaper alternatives for launching and operating space missions. This resulted in the commercialisation of affordable access to space, now commonly referred to as Space 2.0; an industry-led evolution that is generating more affordable commercial alternatives for space launch services and operations management, reusable space launch vehicles and, significantly, miniaturised satellite technology.[3] For example, in 1999, California Polytechnic State University, San Luis Obispo, and Stanford University’s Space Systems Development Lab developed the CubeSat standard, prescribed for the pico- and nanosatellite classes of microsatellites.[4] The CubeSat initiative was initially pursued to enable affordable access to reduce the barriers for university students to access space. CubeSat was initially designed to offer a small, inexpensive, and standardised satellite system to support university student experiments.

CubeSat modules are based on building up a satellite with a single or a multiple number of the smallest unitary 10cm cube module, referred to as a ‘1U’ CubeSat, i.e. a picosatellite.[5] This basic building block approach has enabled a standardisation in satellite designs and launchers. Each 1U can weigh up to 1.5 kg[6]; a ‘6U’ CubeSat, i.e. a nanosatellite, measures 30cm x 20cm x 10cm, six times a 1U and weighs up to twelve kilograms[7]. Microsatellites are typically comprised of a standardised satellite chassis and bus loaded with an onboard computer, ‘star tracker’ subsystem to measure satellite orientation, hardware to control satellite attitude and antenna pointing in orbit, solar power subsystem, communications subsystem, a deployable mechanism actuator for unfolding the solar panels and antennas, and the mission payload, i.e. mission-related sensors, cameras, radio transmitter/receiver and the suchlike.

Microsatellite projects exploit commonly available Commercial-Off-The-Shelf (COTS) technology to reduce costs and development schedules, even in military mission systems. The use of COTS technology enables a simplified plug-and-play approach to microsatellite engineering and design. By having pre-made, interchangeable and standardised components, microsatellite designs can be rapidly assembled, tested, evaluated, and modified until an acceptable solution is realised. Agile manufacturing methods such as 3D printing can further reduce the time taken to engineer and manufacture a viable operational microsatellite design.[8]

20161017adf8588365_014
The Buccaneer miniature satellite CubeSat at the UNSW Canberra satellite research laboratory at the Australian Defence Force Academy in Canberra on 17 October, 2016.(Source: Australian Department of Defence)

The CubeSat model has become a commonly accepted standard for low-cost, low-altitude orbit, and short duration space missions. Microsatellites are relatively cheaper, more flexible in mission designs, and can be built more rapidly when compared to larger satellites, and can be replaced on-orbit more frequently, thereby taking advantage of recent technological innovation. Their small size can also exploit spare spaces in the payload section of the launch vehicles that are scheduled and funded mainly for larger satellites. This is commonly referred to as a ‘rideshare’ or ‘piggyback.’ The challenge for the designers of such ‘piggyback’ missions is to find a suitable launch event with a date and planned orbit that matches the readiness and mission of the microsatellite.

Space 2.0 evolution has realised commercial alternatives to the traditional space mission designs that used heavy satellites launched from heavy rockets. These smaller and cheaper rockets have been specifically designed to launch lighter payloads of microsatellites. In 2017, an Indian Polar Satellite Launch Vehicle using a PSLV-C37 heavy-lift rocket set a world record in lifting 104 small satellites into orbit in a single space launch event. As the Times of India reported:

India scripted a new chapter in the history of space exploration with the successful launch of a record 104 satellites by ISRO’s [Indian Space Research Organisation] Polar Satellite Launch Vehicle in a single mission. Out of the total 104 satellites placed in orbit, 101 satellites belonged to six foreign countries. They included 96 from the US and one each from Israel, the UAE, the Netherlands, Switzerland and Kazakhstan.[9]

The growing maturity and expanding capabilities of CubeSat systems have seen a growing acceptance beyond university users. For example, DST and UNSW Canberra are designing, building, and testing microsatellite designs for space missions to meet Defence needs in Australia.

Space 2.0 standards and microsatellites are not intended to replace the traditional large satellites deployed into higher altitude orbit missions. Large and small-sized satellites each offer different benefits and limitations. Large satellites can collect information with higher fidelity when configured with bigger optical and radiofrequency apertures, with room available for better pointing control subsystem, larger and more powerful on-board computing systems, and multiple mission, all needing a larger power subsystem. Alternatively, disaggregating space missions across different small satellites, deployed into a large constellation, may be more survivable to environmental hazards and resilient to interference in a contested environment.

Small satellite missions can now fulfil the potential mission needs of military, commercial operators, scientists and university students. Microsatellites have already been employed for communications, signals intelligence, environmental monitoring, geo-positioning, observation and targeting. They can perform similar functions as larger satellites, albeit with a much smaller power source and reduced effective ranges for transmitters and electro-optical devices. They are easier and cheaper to make and launch for a short-term, low-Earth orbit mission. This is ideal for employing space missions to improve ADF capabilities on the ground.

Defence has partnered with UNSW Canberra, including ‘UNSW Canberra Space’ – a team of space academics and professionals – to collaborate in space research, engineering, and mission support services with Space 2.0 satellite technology in space missions for DST and RAAF. When combined with new and agile manufacturing techniques, these microsatellite missions provide the ADF with opportunities to test and evaluate potential options for operationally responsive space capabilities.

UNSW Canberra has already built the ‘Buccaneer Risk Mitigation Mission’ (BRMM) as its inaugural microsatellite space mission, in partnership with DST.[10] In November 2017, NASA successfully launched BRMM from Vandenberg Air Force Base in California. BRMM is a collaboration, in both the project engineering project and space mission management, between DST and UNSW Canberra to jointly fly and operate the first Australian developed and operated defence-science mission. BRMM is currently operational in low-Earth orbit, at a height above the ionosphere which is a dynamic phenomenon that changes with space weather effects and the Sun’s position.

The importance of this orbit is that the RAAF is dependent on the ionosphere to enable functioning of its Jindalee Operational Radar Network (JORN) systems, which is a crucial component of a national layered surveillance network that provides coverage of Australia’s northern approaches.[11] The JORN coverage and system performance are critically dependent on the ionosphere. The BRMM satellite is configured with a high-frequency receiver to measure the JORN signal that passes through the ionosphere. These signal measurements allow DST scientists and engineers to study the quality of JORN’s transmitted beam and signal, and the propagation of High Frequency (HF) radio waves that pass skywards through the ionosphere. BRMM was planned with a one-year mission-life but could stay in orbit for up to five years, depending on space weather effects and atmospheric drag.[12] BRMM is also a risk reduction activity for the ‘Buccaneer Main Mission’ (BMM) as a follow-on space mission.[13] BRMM will provide space data on how spacecraft interact with the orbital environment, to improve the satellite design for BMM, and also provide mission experience that can be used to improve the operation of the BMM. The BMM will also be used to calibrate the JORN high-frequency signals but will use an improved payload design, based on a heritage of BRMM. BMM is planned for a launch event in 2020.

This space odyssey pursued by UNSW Canberra is also bringing direct benefits to RAAF. The UNSW Canberra space program includes parallel efforts to develop three CubeSats, funded by RAAF, for two separate missions in separate events. These space missions will support academic research into the utility of microsatellites, configured with a small-sized sensor payload, for a maritime surveillance role. The first mission, ‘M1,’ will deploy a single CubeSat, currently scheduled to share a ride with a US launch services provider in mid-November 2018.[14] UNSW Canberra will continue the program and develop a second mission, ‘M2,’ which is planned to deploy two formation-flying, with inter-satellite communications, in a single space mission in 2019. The M1 and M2 missions will support research and education for space experts in Defence, and UNSW Canberra, to further explore and realise new possibilities with Space 2.0 technologies.

To conclude, the advent of Space 2.0 has reduced cost barriers and complexity to make access to space missions and space lift more affordable for more widespread uses. The increased affordability of space technology has helped to demystify mission systems and increase the interests and understanding of the potential opportunities for Space 2.0 missions as alternatives to more expensive and more complex space missions. Additionally, Space 2.0 enables agility in the design phase for the rapid development of new and viable concepts for space missions hitherto not possible with Space 1.0 technology. Space 2.0 evolution makes it possible for ADF to consider affordable space options; UNSW Canberra’s knowledge and technical achievements in space engineering and operations, with DST for Buccaneer and RAAF for M1 and M2, will provide critical research for considering the potential for new space missions for Australia.

Squadron Leader Michael Spencer is an Officer Aviation (Maritime Patrol & Response), currently serving in the RAAF Air Power Development Centre, analysing potential risks and opportunities posed by technology change drivers and disruptions to the future employment of air and space power. His Air Force career has provided operational experiences in long-range maritime patrol, aircrew training, and weaponeering, and management experiences in international relations, project management in air and space systems acquisitions, space concepts development, and joint force capability integration. He is an Australian Institute of Project Management certified project manager and also an Associate Fellow of the American Institute of Aeronautics & Astronautics.

Disclaimer: The views expressed in this document are those of the author and do not necessarily reflect the official policy or position of the Department of Defence, Royal Australian Air Force, or the Government of Australia. The Commonwealth of Australia will not be legally responsible in contract, tort or otherwise, for any statements made in this document.

Header Image: Lunch-box sized satellites (CubeSats) used for the Buccaneer and Biarri space missions. (Source: Australian Department of Defence)

[1] UNSW Sydney, ‘RAAF invests $10 million in UNSW Canberra Space missions,’ UNSW Newsroom (2017).

[2] F. Burke, ‘Space 2.0: bringing space tech down to Earth,’ The Space Review, 27 April 2009.

[3] Ibid.

[4] NASA, ‘CubeSat 101 – Basic Concepts and Process for First-Time CubeSat Developers,’ NASA CubeSat Launch Initiative, NASA Website, 2017.

[5] ‘What are SmallSats and CubeSats?,’ NASA Website, 2015.

[6] Cubesat, 1U-3U CubeSat Design Specification, Revision 13, The CubeSat Program, 2014.

[7] Cubesat, 6U CubeSat Design Specification, Revision 1.0, The CubeSat Program, 2018.

[8] European Space Agency, ‘Ten Ways 3D Printing Could Change Space,’ Space Engineering & Technology, 2014.

[9] U. Tejonmayam, ‘ISRO creates history, launches 104 satellites in one go,’ The Times of India, 15 February 2017.

[10] H. Kramer, ‘Buccaneer CubeSat Mission,’ eoPortal Directory, 2017.

[11] Royal Australia Air Force, ‘Jindalee Operational Radar Network,’ 2018.

[12] Kramer, loc cit.

[13] Ibid.

[14] UNSW Canberra, ‘M1 satellite on track for September launch,’ 2018.

The Downfall of the Red Baron: Lessons Learned from the First World War ‘Ace of Aces’

The Downfall of the Red Baron: Lessons Learned from the First World War ‘Ace of Aces’

By Squadron Leader Michael Spencer

Baron Manfred von Richthofen was killed in air combat on 21 April 1918. He was unequalled in having shot down 80 enemy aircraft in aerial combat during the First World War to become the most famous ‘Ace of Aces’ in the early history of air combat. He was the pride of the German Imperial Army and respected by military aviation historians as the ‘Red Baron.’ A study of Richthofen’s aerial victories highlights the importance of critical thinking to identify and repeat the rules for success in aerial dogfighting. Evidence-based analyses of his behaviours and medical forensics in the months before his death indicate how the war may have been exacting an increasing toll on his judgement and decision-making abilities. The combination of seemingly discrete events that occurred during on 21 April triggered his abnormal behaviours and poor decisions, which had an accumulative effect that led to his ultimate downfall.

4108464
Flying officers attached to Rittmeister Manfred Freiherr Von Richthofen’s squadron, Jasta 11, c. April 1917. Richthofen himself is seated in the Albatros D.III. aircraft. From left to right: standing: unidentified (possibly Leutnant Karl Allmenroeder); Hans Hintsch; Vizfeldwebel Sebastian Festner; Leutnant Karl Emil Schaefer; Oberleutnant Kurt Wolff; Georg Simon; Leutnant Otto Brauneck. Sitting: Esser; Krefft; Leutnant Lothar von Richthofen, younger brother of Manfred. (Source: Australian War Memorial)

Manfred von Richthofen and Learning Lessons

The British called him the ‘Red Baron’, the French scorned him as the ‘le diable rouge’ (Red Devil) while his 1917 autobiography was called Der Rote Kampfflieger, which broadly translates as the ‘Red Battle Flyer.’[1] F.M. Cutlack, the official historian of the Australian Flying Corps (AFC), described him as the ‘star of stars in the German Air Force.’[2] On 21 April 1918, Richthofen pursued a Royal Flying Corps Sopwith Camel low over enemy-controlled territory, breaking one of his fundamental air combat maxims, and was fatally wounded. Until then, Richthofen had strictly followed Dicta Boelcke and his critical-thinking of air combat to be scorned, feared, and respected as the highest scoring air ace of the First World War.[3]

The quality of the box matters little. Success depends upon the man who sits in it.

Manfred von Richthofen, ‘The Red Battle Flyer,’ para. 182.

One of the reasons behind his significant success in air combat was his adherence to doctrinal maxims that guided his judgements in deciding when and how he would enter an action in the battlespace and engage a target. The Dicta Boelcke was named after their developer: Oswald Boelcke, Germany’s first air ace, with a total of forty victories. While early aircraft commanders were still seeking to understand roles for aircraft as the newest war machines to enter the battlespace, Boelcke is recognised as being one of the first fighter aces to apply critical thinking to air combat. Boelcke drew on his observations in air combat, reviewed his successes and failures, and critically analysed them to identify the critical decision points, ethical behaviours, and practical tactics that he considered would lead to repeated successes in the air. Boelcke tested and evaluated his air combat rules before recommending them as ‘rules for success’ that should be applied by other German pilots when flying into air combat as individuals or as a group in a squadron.

Boelcke promoted his lessons-learned as dicta to increase the chance of success in air combat by the pilots under his command, especially those who were new and inexperienced. His aerial warfighting principles were endorsed by the German Army to all its airmen, as Dicta Boelcke. After Richthofen was assigned to serve in Boelke’s squadron, Boelke became Richthofen’s mentor, instructor, squadron commander, and close friend. Richthofen became a keen practitioner of Dicta Boelcke.

We were all beginners. None of us had had a success so far. Consequently, everything that Boelcke told us, was to us, gospel truth.

Manfred von Richthofen, ‘The Red Battle Flyer,’ para. 109.

Richthofen fully embraced Dicta Boelcke and, after gaining his own experiences in aerial combat, he learned to apply his critical-thinking to identify his maxims to improve and complement his list of successful air combat tactics doctrine. One of his doctrinal maxims to complement Dicta Boelcke was to ‘never obstinately stay with an opponent’ or, having initiated a dogfight in favourable circumstances, know when to break off the attack when the situation has changed and is no longer favourable. He did not adhere to this principle, later, in his final mission.

3988465
General von Falkenhayn and Richthofen inspecting a Fokker triplane. Mr A.H.G. Fokker is seated in the cockpit and General von Falkenhayn is on his right. (Source: Australian War Memorial)

Richthofen’s Final Mission

On 21 April 1918, Richthofen pursued a British Sopwith Camel piloted by novice Canadian pilot, Lieutenant Wilfrid May of No. 209 Squadron. May had just fired on the Richthofen’s cousin, Lieutenant Wolfram von Richthofen. On seeing his cousin being attacked, Richthofen flew to aid his cousin and engaged May, causing the latter to disengage from his dogfight with Wolfram. In turn, Richthofen was attacked by another Sopwith Camel piloted by Canadian Captain Arthur ‘Roy’ Brown. Richthofen successfully evaded his attacker and, even though his Spandau machine guns had now jammed and could only be fired manually, resulting in single shots, he decided to resume his pursuit of May.

Richthofen was known to be very calculating in his observations of air battles before deciding when and whom to engage. Engagement only occurred when circumstances were likely to result in a favourable outcome. On this day, Richthofen’s judgment might have been affected by wanting to pursue the attacker who threatened his cousin, despite the circumstances – going against the aforementioned dicta that he considered critical for air combat success. Additionally, Richthofen had a reputation of being a skilled hunter on the ground with a single-shot rifle, and he may have decided that a victory with a single-shot Spandau machine gun be well within his capabilities and would significantly enhance his reputation and the morale of his flying Jasta.

May sought to escape Richthofen by rapidly descending to fly low across the front line into Allied-held territory. May later explained that his aircraft guns had jammed while being pursued and unable to out-manoeuvre Richthofen, he decided to fly low across the ridge into friendly territory, to ‘make a dash for a landing as his only hope.’[4] Eyewitness accounts reported seeing the Richthofen pursue May down to rooftop heights over the nearby village, which had a church with a bell-tower, and hearing the repeated cracking sounds of single gunshots coming from the aerial pursuit as the aircraft passed.

Richthofen appeared to decide to break one of his fundamental rules that he had previously applied so consistently in air combat by persisting in chasing May without regard for the new dangers arising around him. Richthofen was now flying low over Allied-held territory, with a strong easterly wind causing his aircraft to drift further behind enemy lines, and he was now flying low enough to be within the range of the Australian machine-gunners watching from the trenches. Richthofen seemed to have lost his situational awareness in focusing on May. Richthofen was then observed by the gunners in the trenches to fly up suddenly as if suddenly recognising the new dangers around him and only then decided to break off his pursuit of May – but it was too late. While pulling-up to ascend to a higher altitude above the trenches and ground troops, Richthofen was fatally struck by a single .303 round

He who gets excited in fighting is sure to make mistakes. He will never get his enemy down.

Manfred von Richthofen, ‘The Red Battle Flyer,’ para. 137.

Mortally wounded, Richthofen managed to execute a controlled crash landing, on the Australian-held battleground, before dying in the cockpit. Australian soldiers were quick to attend the crash site and seek to recover Richthofen.

Medical forensic analysis has indicated that Richthofen seemed to suffer from an uncharacteristic episode of ‘target fixation’, breaking his own rule to ‘never obstinately stay with an opponent.’ Medical researchers considered that this uncharacteristic error in judgement might be attributed to a persistent head injury from a head wound caused by a machine gun projectile ricocheting from his head during a dogfight that occurred nine months earlier.[5]

There has been controversy over multiple claims as to who was responsible for the fatal shot that brought down Richthofen; was it fired from a pursuing aircraft or one of the machine-gunners in the trenches? Although Brown was initially credited with the victory, medical forensic analyses of the wound ballistics, conducted in detail in later years, have indicated that Richthofen was struck in the chest by groundfire and not from an airborne shooter. Australia’s Official Historian, C.E.W. Bean, gathered eyewitness accounts from the battlefield that indicate it was most probable that Sergeant Cedric Popkin, an Australian Vickers machine gunner in the trenches, had fired the fatal shot that brought down Richthofen.[6]

Members of No. 3 Squadron, AFC, assumed responsibility for Richthofen’s remains as it was the Allied air unit that was located nearest to the crash site. Richthofen was buried in a military cemetery in France, with full military honours, by members of No 3 Squadron. A British pilot flew solo over the German air base of Jasta 11 to airdrop a message to respectfully inform them of the death of their celebrated commander, Baron Manfred von Richthofen on 21 April 1918.

6220692
The funeral cortege of Baron Manfred von Richtofen moving along to the cemetery at Bertangles, 22 April 1918. (Source: Australian War Memorial)

Enduring Lessons for Modern-Day Aerospace Professionals

While accepting the challenges associated with extrapolating lessons from a historical example, Richthofen’s development and experience as a fighter pilot in the First World War does, however, highlight several enduring lessons for those flying in today’s operating environment. A key lesson is the need to develop critical thinking amongst military professionals who can effectively analyse their operating environment and develop solutions to challenges.

Boelcke was one of the first air aces to apply critical thinking to air combat and draw out best-practices as a way to increase the probability of success for other pilots, especially new and inexperienced ones. This was something that Richthofen built on, and he recognised the need for what in the modern vernacular might be referred to as a system-of-interest whereby in the operation of aerospace systems, the air vehicle, operator, and operating procedures and tactics need to work effectively in combination to achieve success. However, the recognition that a weapon, such as an aeroplane, was only as good as the person who operated it, and the training, tactics and procedures used by that individual, was only one part of the critical thinking process.

It was also necessary for the likes of Richthofen to capture lessons learned in the combat environment and regularly test and evaluate critical systems to improve performance. This also required pilots such as Richthofen to learn from personal mistakes and those of critical peers through ongoing discourse with both subordinates and superiors. The next step in this process was the ability to apply them in operation. Nevertheless, these lessons learned processes were all for nothing if not usefully applied as evidenced by Richthofen’s final flight where we see the significance of high-consequence decision-making and the failure to reduce risk.

The accumulation of seemingly small discrete decisions made by Richthofen on his last flight, where each decision had a seemingly minor consequence when reviewed in isolation, resulted in an accumulative effect that ultimately resulted in catastrophe. As such, it is essential that organisations need to develop the right culture, management systems, and training programs to reduce catastrophic risks to a minimum. Indeed, in Richthofen’s case, arguably, someone should have ensured that he did not fly on that fateful day as he was neither in the right physical or mental condition to fly effectively. Pilots and aircrew are expensive assets to train and maintain, and unnecessary losses such as Richthofen’s impact on operational effectiveness. Richthofen’s state on 21 April 1918 affected his judgement as he ignored one of his critical dicta – to never obstinately stay with an opponent.

Finally, it is worth reflecting that innovation and inventiveness never rest. Sometimes it is beneficial to study the past before looking to the future and look for opportunities to build on the experiences and inventiveness of others rather than starting at an experience level of zero. As Richthofen himself reflected:

Besides giant planes and little chaser-planes, there are innumerable other types of flying machines and they are of all sizes. Inventiveness has not yet come to an end. Who can tell what machine we shall employ a year hence in order to perforate the atmosphere?

Manfred von Richthofen, ‘The Red Battle Flyer,’ para. 222.

Squadron Leader Michael Spencer is currently serving in the Royal Australian Air Force at the Air Power Development Centre in Canberra, analysing potential risks and opportunities posed by technology change drivers and disruptions to the future applications air and space power. His Air Force career has provided operational experiences in long-range maritime patrol, aircrew training, and weaponeering, and management experiences in international relations, project management in air and space systems acquisitions, space concepts development, and joint force capability integration. He is an Australian Institute of Project Management certified project manager and also an Associate Fellow of the American Institute of Aeronautics & Astronautics. The opinions expressed in this article are the author’s own and do not necessarily reflect the views of the Royal Australian Air Force or the Australian Government.

Header Image: The remains of Baron Manfred von Richthofen’s plane and the two machine guns. Most of these officers and men are members of No. 3 Squadron Australian Flying Corps. (Source: Australian War Memorial)

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

[1] Der Rote Kampfflieger was first published in 1918. The quotes in this article are taken from the 1918 translation by T. Ellis Barker, with a preface and notes by C.G. Grey, editor of The Aeroplane. This edition published by Robert M. McBride & Co. can be found on the Gutenberg.org site.

[2] F.M. Cutlack, The Official History of Australia in the War of 1914-1918 – Volume VIII: The Australian Flying Corps in the Western and Eastern Theatres of War, 1914-1918, 11th Edition (Sydney, NSW: Angus and Robertson, 1941), p. 215.

[3] R.G. Head, Oswald Boelcke: Germany’s First Fighter Ace and Father of Air Combat (London: Grub Street, 2016), pp. 97-8.

[4] Cutlack, The Australian Flying Corps, p. 251.

[5] P. Koul, et al, ‘Famous head injuries of the first aerial war: deaths of the “Knights of the Air”,’ Neurosurgical Focus, 39:1 E5 (2015).

[6] ‘Appendix 4 – The Death of Richthofen’ in C.E.W. Bean, The Official History of Australia in the War of 1914-1918 – Volume V: The Australian Imperial Force in France during the Main German Offensive, 1918, 8th Edition (Sydney, NSW: Angus and Robertson, 1941), pp. 693-701.

#BookReview – Space Warfare in the 21st Century: Arming the Heavens

#BookReview – Space Warfare in the 21st Century: Arming the Heavens

By Squadron Leader Michael Spencer

Joan Johnson-Freese, Space Warfare in the 21st Century: Arming the Heavens. Abingdon: Routledge, 2017. Notes. Index. xx + 202 pp.

9781138693883

In this book, Joan Johnson-Freese, Professor of National Security Affairs at the US Naval War College, has written a comprehensive history of the development of US national policy for space security. In the preface, Johnson-Freese cited General John Hyten, the then Commander, US Air Force Space Command, as stating that, ‘if the United States is “threatened in space, we have the right of self-defence, and will make sure we execute that right.”’ (p. ix) The underlying driver that persists in twenty-first century US policy developments on space security, up to the publication of this book in 2017, is to be able to access and securely use space for its purposes independently and at the time of its choosing. The US also seeks to keep pace with the increasing number of space-faring nations and developments in space power projection.

The book’s title invokes visions of nations in the twenty-first-century posturing to exploit niche combat capabilities to project their influence into future confrontations into the common grounds located above the Earth that is the shared orbital domain. However, this book is a well-constructed guide that walks the reader through the process of US national policy development for space security. More specifically, the book logically describes to the reader the policy determinants for US national security and space security. It also considers the drivers adopted by the US government that has steered its space security interests and shaped attitudes and organisational responses to assert those interests in the shared space orbital domain in the early period of the twenty-first century. The book concludes with suggesting that US space security policy take the lead in providing a secure space domain.

Space is one of the domains used as a common ground to globally connect actors in activities that either permeates across the globe or are discrete interconnected nodes remote located around the world. Moreover, individual state actors wish to exploit that common ground to build compartments within it for their exclusive purposes. State actors will then seek to build systems to protect these compartments that inadvertently increase the congested, contested, and competitive character of the space domain. This also has implications for dependent capabilities, for example, the use of the electromagnetic spectrum for assured access to space systems that support state interests. The challenge for US policy development is to adopt mechanisms that can discriminate between a hostile act and an accidental on-orbit event and provide options for appropriate responses that will not further exacerbate the problems of congestion and inadvertently escalate the competition into an uncontrolled contest.

Chapter one provides a rolling history of the US government’s inaugural efforts in developing policy statements that injected space interests into national security policy. These were then elaborated further in the first dedicated national space policy and space security strategy. US policy-makers, along with many space-savvy actors, have accepted that in a globalised world, economic and national security have become critically dependent on space. However, space is increasingly complex, not regulated, and serves as a global common, which is a challenge for the security policy of individual nations.

Chapter two characterises the priority problems posed by the utility of the orbital space domain to security policy-makers. The characteristics of space activities in the global common fundamentally challenges the management of national security by individual nations. Space cannot be a physical extension to sovereign airspace. Additionally, space is increasingly more affordable and accessible to more state and non-state actors, and increasingly more critical to designs for public infrastructure and daily lifestyles. Although it is accepted that space is a globally shared common, it has become increasingly congested, contested, and competitive in the absence of robust regulation. The space domain is difficult to control, and this is a driver for significant space-faring nations to consider structuring military force options to help assure space access from adverse environmental effects, on-orbit accidents, potential future adversary actions.

Chapter three discusses the reasons why the US should make strategies for space security. The fundamental assumption made is that conflict in the common grounds is inevitable and that concern over the future capabilities of potential adversary nations in the space domain is an acceptable driver for the development of US space security strategy irrespective of the publicly announced intentions of other nations. Johnson-Freese postulates potential strategy developments in the US along the four separate themes. First, space dominance is essential to assuring US military/civilian capabilities. Second, the weaponisation of space is inevitable. Third, while space is essential to military capabilities, the government should seek to limit the militarisation of space, and finally, the US should promote the use of space as a sanctuary, in a similar analogy to the international cooperation for managing Antarctica. Irrespective of the strategic theme, all discussions conclude that space is the Achilles heel for military power.

161208-D-ZZ999-998
The Defense Advanced Research Projects Agency’s Airborne Launch Assist Space Access program is developing a much-less expensive way to routinely launch small satellites, with a goal of at least a threefold reduction in costs compared to current military and U.S. commercial launch costs. (Source: US Department of Defense)

In chapter four, Johnson-Freese discusses options for military roles that can be performed in and with space to assure space security with a focus on the separate roles and potential technologies for the military to deter, defend, and defeat an adversary in space. The challenge for military commanders is that space is not a logical extension of the air domain. This requires strategists and capability developers to recognise the need to understand the differences in science, technology, and costs. The conduct of warfare in the orbital space domain will be challenged by the definition and ethics of military endstates involving any on-orbit military actions. This is especially true of those legacy effects, such as orbital space debris and disruption to critical public infrastructure, which may endure, potentially, for many generations after a conflict has ended.

Whereas chapters one to four steps the reader through a logical process of understanding the outcomes for a space security strategy and deriving the necessary outputs, chapter five discusses the critical national stakeholders who are essential in putting space strategy into effect, and the support necessary to make it useful. The observation made is that the issue of space security has generated an industry for the pondering, pursuit, and procurement of new space applications by military, industry, aerospace think tanks, academia, and support research organisations. Thus, it is good to define a threat that can be used to justify the significant and long-term investments into space security.

Chapter six is a discussion on the impact of the newest space actors and their behaviours and attitudes towards space. Space access is no longer considered to be exclusive to government-run organisations in space-faring nations. Technology miniaturisation and reduced launch costs have democratised space access to allow non-state actors. Moreover, entrepreneurial investors have triggered a need for strategists to reconsider space as ‘New Space’ to be shared with new additional actors and an increased level of unexpected and complexity in space behaviours. Johnson-Freese refines the book’s premise to consider that access to is space is inevitable but that space warfare is not necessarily inevitable.

Chapter seven concludes the Johnson-Freese’s discussion on strategy development for US space security by highlighting the challenges of democratisation of space access and the globalisation of interdependent space users, both military and non-military. While it is difficult to define a policy for space warfare when a definition for ‘space weapon’ has not yet been universally agreed, space security is complex and might be better achieved under a multi-lateral cooperative arrangement between space-faring nations. While space warfare might serve to achieve a short-term goal, it may be better to appreciate that the more prolonged effects of destabilising the space domain will be detrimental to all space users. A continuously growing number of space users want evermore space-derived services driven by ever-evolving technological improvements that allow more space missions to be conducted near each other. However, this uncontrolled approach by separate nations to individually access the common grounds of the Earth space orbital domain must logically converge at a point where the risks of accidents or deliberate action on orbit must be considered as a likely determinant for future space security policy, and not necessarily a space warfare policy.

In conclusion, this book is well-referenced, and presented in a logical flow of clearly articulated thoughts, making it a useful study reference for strategic thinkers. Johnson-Freese, herself a noted specialist on the space domain, has consulted with subject matter experts from appropriate military and space industry organisations and think-tanks, and is supported by critical individuals typified by the international recognised experts such as Dr David Finkleman, who has served on numerous technical and scientific advisory and study boards for industry and the federal government and is a Fellow of the American Institute of Aeronautics and Astronautics.

Squadron Leader Michael Spencer is currently a serving officer in the Royal Australian Air Force (RAAF). He serves at the Air Power Development Centre in Canberra where he is involved in the analysis of potential risks and opportunities posed by technology change drivers and disruptions to future air and space power. His RAAF career has provided operational experiences in long-range maritime patrol, aircrew training, and weaponeering, and management experiences in international relations, project management in air and space systems acquisitions, space concepts development, and joint force capability integration. He is also an Associate Fellow of the American Institute of Aeronautics & Astronautics. The opinions expressed are his alone and do not reflect those of the RAAF, the Australian Defence Force, or the Australian Government.

If you would like to contribute to From Balloons to Drones, then visit our submissions page here to find out how.

Header Image: An Atlas V rocket carrying a Space Based Infrared System Geosynchronous Earth Orbit satellite for a US Air Force mission lifts off from Cape Canaveral Air Force Station, Florida, 19 January 2018. (Source: US Department of Defense)