The Kh-101 and Syria: Maturing the Long-Range Precision-Strike Capabilities of Russia’s Aerospace Forces

The Kh-101 and Syria: Maturing the Long-Range Precision-Strike Capabilities of Russia’s Aerospace Forces

By Guy Plopsky

On September 26, 2017, modernised Tupolev Tu-95MS bombers of the Russian Aerospace Forces (VKS) Long-Range Aviation Command executed another strike with Kh-101 air-launched cruise missiles (ALCMs) against targets in Syria. According to Russia’s Defense Ministry, the missiles targeted ISIS and Jabhat al-Nusra ‘command posts, hardware and manpower concentration areas as well as ammunition depot.’[1] As with previous Russian ALCM strikes during the conflict, the heavily publicised September 2017 strike was intended to serve yet another reminder to the United States and NATO (as well as to other potential adversaries) of the Russian Aerospace Forces’ growing long-range precision-strike capabilities.

Lineup_of_Tu-95_at_Engels_Air_Base
A line up of Tupolev Tu-95MS’ at Engels Air Base c. 2005 (Source: Wikimedia)

Designed by MKB Raduga, the Kh-101 is an advanced conventionally-armed cruise missile with low observable characteristics. The missile has a reported operational range of 4,500km (2,800 miles),[2] and features a guidance package that includes an inertial navigation system (INS), a terrain contour matching (TERCOM) system, a digital scene-matching area correlation (DSMAC) system, and a GPS/GLONASS receiver.[3] Compared with the older, conventionally-armed Kh-555 ALCM, the Kh-101 features significantly improved accuracy and a larger payload, making it suitable for use against hardened targets.[4] Drone footage of Kh-101 strikes from Syria, including the September 2017 strike, appears to attest to the missile’s high-accuracy (though the impact of only several missiles is shown).[5]

Russian bombers first utilised Kh-101s in combat on 17 November 2015, when Tu-160 bombers delivered the new cruise missiles against targets in Syria.[6] The strike, which also included Tu-95MS bombers armed with older Kh-555 ALCMs, marked the combat debut of both the Kh-555 and Kh-101 as well as the Tu-160 and Tu-95MS. Exactly one year later, on November 17, 2016, modernised Tu-95MS bombers executed their first strike with Kh-101 cruise missiles.[7] Before the integration of the Kh-555 and Kh-101 on the Tu-95MS and the Tu-160, and their subsequent employment in Syria, the two bombers were utilised solely for the nuclear deterrence role and did not participate in conventional conflicts.

The only Russian bomber currently in service with the Long-Range Aviation Command to have seen combat before Syria is the Tu-22M3, which flew sorties in the Soviet-Afghan War, the First Chechen War and, more recently, the 2008 Five Day War with Georgia. In all three conflicts, the Tu-22M3 was used exclusively for delivering unguided (or ‘dumb’) bombs – a mission which it continues to fulfil in Syria.[8] Given that bombers delivering unguided munitions are likely to find themselves within range of enemy fighter aircraft and surface-to-air missiles (SAMs), such an approach is only viable for low-intensity conflicts in which the adversary lacks credible air defences. Even then, multiple sorties against a single target may be required, and excessive collateral damage may be caused due to the poor accuracy of unguided bombs. Russia witnessed the difficulty of operating its bombers in a contested airspace first hand in August 2008, when one of its Tu-22M3s was shot down by a Georgian SAM during a strike sortie against a Georgian military base.[9]

The introduction of the Kh-555 and Kh-101, therefore, represents a crucial new capability for Russia’s Long-Range Aviation Command, one which allows it to partially compensate for the lack of a long-range very low observable platform. Unlike the USAF, which operates the B-2A stealth bomber, the VKS does not currently field a long-range very low observable platform capable of penetrating modern integrated air defence systems (IADS) and won’t be fielding one until at least the end of the next decade.[10] Hence, to avoid being targeted by adversary fighter aircraft and ground-based air defences in the event of a conflict, Russian bombers will need to launch long-range conventionally-armed ALCMs from stand-off ranges. This is particularly true for the cumbersome turboprop-powered Tu-95MS – the backbone of Russia’s Long-Range Aviation Command, – which, unlike the Tu-160 and Tu-22M3, is not capable of operating at supersonic speeds.

SU-30SM_escortant_un_Tu-160_qui_lance_un_missile_de_croisière
A Tupolev Tu-160 launching an Kh-101 against a target in Syria, c. 20 November 2015 (Source: Wikimedia)

In this regard, the integration of the Kh-101 on the Tu-95MS dramatically expands the legacy bomber’s conventional strike capability, which until recently, was limited to dropping unguided bombs, transforming it into a formidable long-range precision-strike platform capable of accurately engaging hardened targets in heavily defended areas. At present, Russia is also outfitting its Tu-95MS bombers with SVP systems (developed by ZAO Gefest i T), which will enable Russian bomber crews to retarget their missiles before launch.[11] This will further enhance mission flexibility, allowing modernised Tu-95MS bombers to strike not only fixed but also relocatable targets. The ability of the Kh-101 to cover very large distances also reduces the Tu-95MS (and Tu-160’s) need to rely on in-flight refuelling for long distance missions. This, as several analysts have noted, makes the Kh-101 a particularly valuable asset given Russia’s relatively small fleet of aerial-refuelling tankers and limited overseas basing options.[12] A modernised Tu-95MS can carry up to eight Kh-101 ALCMs on four externally-mounted two-station pylons, while a Tu-160 can carry up to 12 such missiles on two internally-mounted six-station rotary launchers.

Considering that neither ISIS, nor the other factions with whom Russia is presently engaged in active combat with field capable air defenses, the Long-Range Aviation Command’s use of modernized Tu-95MS and Tu-160 bombers with Kh-101 ALCMs in Syria stems from Moscow’s desire to test both the reliability of its new air-launched weapon and its carrier platforms as well as the proficiency of Russian bomber crews under real combat conditions. As with the occasional use of conventionally-armed Kalibr sea-launched cruise missiles (SLCMs) in the Syrian conflict, the employment of Kh-101s is likewise intended to convey a strong signal to Russia’s potential adversaries and reflects Moscow’s desire to place greater emphasis on conventional deterrence. The need to expand precision-strike capabilities and increase reliance on conventional weapons for deterrence has been highlighted in Russia’s 2014 Military Doctrine and has been voiced by Russian military officials.[13] As Russian Defense Minister, Sergei Shoigu, noted in February 2017, though:

[t]he development of strategic nuclear forces remains an absolute priority for us […] the role of nuclear weapons in deterring a potential aggressor will decrease first of all due to development of high-precision weapons.’[14]

For the United States and NATO, Russia’s growing emphasis on conventional long-range precision-strike weapons such as the Kh-101 represents an increasingly pressing need to bolster missile defences.

Guy Plopsky holds an MA in International Affairs and Strategic Studies from Tamkang University, Taiwan. He specialises in air power, Russian military affairs and Asia-Pacific security. You can follow him on Twitter.

Header Image: A Russian Tupolev Tu-160 ‘Blackjack’ in flight over Russia. (Source: Wikimedia)

[1] For a description, see: Russian Ministry of Defense, ‘Нанесение авиаударов Ту-95МС крылатыми ракетами Х-101 по объектам ИГИЛ в Сирии [Tu-95MS Airstrikes with Kh-101 Cruise Missiles Against ISIS Objects in Syria],’ YouTube video, 3:01. Posted September 2017. https://www.youtube.com/watch?v=NaI0QuvgKJA.

[2] ‘Министр обороны России генерал армии Сергей Шойгу провел военно-техническую конференцию [Russian Defense Minister Army General Sergei Shoigu held a Military-technical Conference],’ Russian Ministry of Defense, October 6, 2016

[3] Piotr Butowski, ‘All missiles great and small: Russia seeks out every niche,’ Jane’s International Defense Review, October 2014, pp. 48-9.

[4] Anton Lavrov, ‘Russia’s GLONASS Satellite Constellation,’ Moscow Defense Brief, 60:4 (2017).

[5] For example, see the video footage from September 2017 strike in fn1.

[6] David Cenciotti, ‘Russian MoD Video Shows Tu-160, Tu-95 and Tu-22 Bombers (with Su-27 Escort) Bomb ISIS in Syria,’ The Aviationist, November 17, 2015.

[7] ‘РФ впервые применила в Сирии новые ракетоносцы Ту-95МСМ с крылатыми ракетами Х-101 [Russian Federation Employed new Tu-95MSM Missile Carrier with Kh-101 Missiles in Syria for the First Time],’ TASS, November 17, 2016.

[8] For example, see: Russian Ministry of Defense, ‘Боевой вылет дальних бомбардировщиков Ту-22М3 с территории РФ по объектам террористов в Сирии [Combat Sortie of Long-range Tu-22M3 Bombers from the Territory of the Russian Federation Against Terrorist Targets in Syria],’ YouTube video, 2:10. Posted January 25, 2016. https://www.youtube.com/watch?v=55ni9KbpSv4.

[9] Anton Lavrov, ‘Russian Air Losses in the Five-Day War Against Georgia,’ in Ruslan Pskov (ed.), The Tanks of August (Moscow: Center for Analysis of Strategies and Technologies, 2010), p. 100.

[10] ‘PAK DA: Russian Defense Ministry Reveals When New Bomber Will Fly,’ Sputnik, April 27, 2017.

[11] Dave Majumdar, ‘One of Russia’s Most Deadly Bombers Now Has a Scary New Capability,’ The National Interest, July 5, 2017.

[12] For example, see: James Bosbotinis, ‘Russian Long-Range Aviation and Conventional Strategic Strike,’ Defense IQ, March 5, 2015.

[13] For an English translation of Russia’s 2014 Military Doctrine see https://www.offiziere.ch/wp-content/uploads-001/2015/08/Russia-s-2014-Military-Doctrine.pdf.

[14] ‘Russian Shield: Nukes Priority, but High-Precision Weapons to Play Greater Role,’ Sputnik, February 21, 2017.

Changing the USAF’s Aerial ‘Kill’ Criteria

Changing the USAF’s Aerial ‘Kill’ Criteria

By Major Tyson Wetzel

On 8 June 2017, a United States Air Force (USAF) F-15E Strike Eagle shot down an Iranian-produced Shahed 129 unmanned aerial vehicle (UAV) over Syria, followed just twelve days later by a second identical event. Earlier this year an Israeli fighter aircraft shot down a Hamas drone, just the most recent of at least half a dozen Israeli UAV kills occurring since October 2012. The face of aerial combat has changed in this era of UAVs, or ‘drones’ as they are commonly called. Aircrew are now more likely to engage UAVs than manned fighters in current and future aerial combat.

13941115000415_photoi
A Shahad-129 UAV.

The question of whether UAV kills should be counted as official aerial victories is unresolved and has recently been hotly debated on social media. In a small sampling of air power enthusiasts conducted by the author on Twitter, just 58% of respondents were in favour of counting UAVs as official kills that count towards ‘ace’ status (five aerial victories). Current USAF policy does not recognise UAV shoot downs as ‘kills,’ but it should. Aircrew should receive proper recognition for the destruction of an adversary’s air assets.

Based on the author’s discussion with current USAF pilots, operators, and air power historians and theorists, there are at least four clear arguments against counting UAV kills as official aerial victories that count towards ace status. First, shooting down a UAV does not require the skill associated with shooting down a manned aircraft. Second, UAVs cannot shoot back. Thus there is a limited risk in this type of engagement, a critical component of aerial combat. Third, and perhaps most importantly, there is not another pilot in the UAV, meaning the UAV cannot respond to adversary actions. Thus there is no ‘sport’ in the shoot down. Finally, there is a risk that allowing unmanned aircraft to count as official kills will open the floodgates to allow the destruction of all airborne objects to count as official aerial victories. I will provide counter-arguments to each of these points as part of my advocacy for modifying current USAF aerial victory criteria to include some classes of UAVs.

While UAVs may be relatively low and slow targets, shooting them down still requires skill and precise aerial employment. Detecting and engaging a UAV is not easy, its low altitude and speed can potentially cause problems for fighter pulsed-Doppler radars. The reduced radar cross section (RCS) of some UAVs also increases the difficulty of engagement. Shooting down a UAV requires detecting a small size and small RCS aircraft, positively identifying that aircraft (often difficult with small systems that do not emit many of the detectable signatures US aircraft typically use to identify adversary aircraft electronically), and guiding a weapon to kill the UAV. These functions; detecting, tracking, identifying, and guiding a weapon to the target are the same functions a fighter pilot would need to shoot down a MiG-29 FULCRUM or a Su-27 FLANKER. Based on my experience, most fighter pilots who have tried to engage a UAV in training or the real-world would agree that a significant amount of skill and tactical acumen is required to complete such a kill.

Airstrikes in Syria
A USAF F-15E Strike Eagle receives fuel from a KC-135 Stratotanker over northern Iraq after conducting airstrikes in Syria, 23 September 2014. These aircraft were part of a large coalition strike package that was the first to strike ISIL targets in Syria. (Source: Wikimedia)

The second argument is based on the fact that most currently fielded UAVs are incapable of firing back at an adversary. Multiple arguments counter this point. First, an aircraft need not be able to return fire to be officially counted as an air-to-air kill. In Operation DESERT STORM, USAF F-15C pilot Greg ‘Dutch’ Masters was given credit for a kill on an Iraqi Air Force (IAF) IL-76 CANDID cargo aircraft. Second, most UAVs do have propelled munitions that could provide a limited ability to respond to an aerial attack. In 2002, a USAF MQ-1 PREDATOR fired an AGM-114 HELLFIRE air-to-ground missile (AGM) against an IAF MiG-25 FOXBAT, though the FOXBAT successfully shot down the PREDATOR. The Shahed 129s that were recently shot down were reportedly equipped with similar AGMs that could conceivably be used to fire on an adversary fighter aircraft. Lightly armed air-to-ground aircraft have always been counted towards official kill counts. In DESERT STORM, US aircraft shot down six helicopters and one aircraft armed with only limited air-to-ground munitions, and no dedicated air-to-air capability (three Mi-8 HIPs, one Mi-24 HIND, one Bo-105, and one Hughes 500 helicopters, and a PC-9 light attack aircraft).

The third argument is that UAVs do not have a pilot in the cockpit, and thus should not be counted as an aerial victory. Virtually all UAVs, even micro UAVs and drones, have an operator who is controlling the system; few UAVs simply fly a pre-programmed route without operator input. Most UAVs, especially the larger and more capable systems, also include a crew on the ground, typically a pilot and a sensor operator, who can build situational awareness of the operational environment, react to, avoid, and attempt to counter adversary attempts to shoot it down. Additionally, this argument ignores the changing face of aerial combat. The preponderance of air assets in future conflicts are likely to be unmanned in the future.

The final argument is that inclusion of UAVs into official kill criteria will risk widening the aperture of official aerial victories to include any airborne objects. Taken to its extreme, one could imagine the destruction of a mini drone or quadcopter being counted as an official kill. The simple solution to this problem is to specifically delineate the types of UAVs that will be considered official kills.

Not all UAV or drone kills should count as official air-to-air kills; the USAF should modify its existing kill criteria to include some classes of UAVs based on size and function of the system. The Department of Defense (DOD) has defined Unmanned Aircraft System (UAS) groups in their 2011 UAS Airspace Integration Plan. These groups are used to distinguish US classes of UAS’, but they also provide a useful method to make a distinction between adversary systems that should officially count as an air-to-air kill.

UAS Table
Department of Defense Unmanned Aircraft Systems Group Descriptions. (Source: 2011 Department of Defense Unmanned Aircraft Systems Airspace Integration Plan)

UAS Groups 1-3 are small airframes, have no or very limited ordnance, and are hand or catapult launched. These ‘micro UAVs’ and ‘drones’ should not officially count as a kill because of their limited ability to react or counter adversary actions, and to avoid the precedence of allowing all airborne assets to count for a kill (think about the ridiculousness of a silhouette of a remote-controlled quadcopter on the side of an F-15). UAS Groups 4 and 5, however, are UAVs that are typically operated by a pilot, are capable of medium-to-high altitude flight, longer range and endurance, beyond line-of-sight operations, and frequently carry propelled munitions that can conceivably be used for self-protection (as a frame of reference, the Shahed 129 would be classified as a Group 4 UAS). These capabilities mirror previous non-fighter aircraft which have been counted as official kills, such as heavily-armed but non-maneuverable balloons in World War I (5 of American ‘Ace of Aces’, Eddie Rickenbacker’s 26 WWI kills were balloons), cargo aircraft (IL-76 in DESERT STORM), and lightly armed helicopters (Bo-105 and Hughes 500 helicopters in DESERT STORM).

The US went 18 years between manned aircraft shoot downs, from the last MiG-29 kill of Operation ALLIED FORCE in 1999 to last week’s Su-22 FITTER kill. However, during this period UAVs have expanded exponentially in number and type, and recently have been targets for US aircrew flying over Syria defending coalition forces. It is time for the USAF, and DOD writ large, to recognise the changing character of aerial combat and designate kills on particular types of UAVs as official aerial victories. Such a decision would legitimately recognise tactical excellence in air combat and bring official aerial victory criteria up to date with changing character of 21st Century warfare.

Tyson Wetzel is a Major in the United States Air Force intelligence officer, a graduate of the United States Air Force Weapons School where he was also an instructor, and the US Marine Corps Command and Staff College. Tyson has deployed multiple times in support of Operations IRAQI FREEDOM, ENDURING FREEDOM, NEW DAWN, and NOBLE EAGLE. He is currently assigned to the Joint Staff at the Pentagon. He tweets @GetterWetzel.

Header Image: A pair of USAF F-15E Strike Eagles fly over northern Iraq early in the morning of 23 September 2014, after conducting airstrikes in Syria. These aircraft were part of a large coalition strike package that was the first to strike ISIL targets in Syria. (Source: Wikimedia)

It is Time to Demystify the Effects of ‘Strategic Western Air Power’ – Part 2

It is Time to Demystify the Effects of ‘Strategic Western Air Power’ – Part 2

By Lieutenant-Colonel Dr Jyri Raitasalo

Editor’s Note: In this two-part article, Dr Jyri Raitasalo considers what he argues are the two fundamental fallacies concerning the application of strategic air power by Western states in the modern era. In the first part, he examined the challenge of the use of military forces as a tool for solving political problems. In this second part, he examines the issue of ‘no casualty warfare.’

Fallacy 2: No casualty warfare

The second fallacy in Western air power paradigm touches on the notion of precision engagement with almost zero civilian casualties and no collateral damage. This narrative was formed in the aftermath of the 1991 Gulf War and has been maturing and strengthening ever since.  Precision engagement has indeed become one of the game changers in warfare lately, but the Western narrative on pinpoint accuracy in warfare has become a strategic level hindrance to effective military operations.

The notion of no or little collateral damage developed into the Western air power paradigm little by little as political leaders since the early 1990s continuously decided to use military force actively for humanitarian purposes. It was a prerequisite that Western military operations do not cause civilian suffering or produce collateral damage in military operations (read: war) that are eventually humanitarian in nature. Focusing on the precise application of large-scale violence was thus a must for political purposes. It was needed for the legitimacy of these operations and to ‘sell’ these operations to domestic audiences within the Western world and internationally.

Combined Air and Space Operations Center
Combined Air and Space Operations Center at Al Udeid Air Base, Qatar, provides command and control of air power throughout Iraq, Syria, Afghanistan, and 17 other nations. The CAOC is comprised of a joint and Coalition team that executes day-to-day combined air and space operations and provides rapid reaction, positive control, coordination, and de-confliction of weapon systems. (Source: Wikimedia)

Also, as these humanitarian military missions had almost nothing to do with Western national interests or threats to Western states, it has been crystal clear from the start that force protection has been essential in these operations. Over time this has developed into a tradition of casualty-aversiveness, making Western soldiers ‘strategic assets’. Air power has facilitated safe military operations as practically all opponents during the post-Cold War era have had no functioning air forces of capable air defences. Relying on air power to fight humanitarian wars has been practically the only way that these operations have become possible in the first place. As President Bill Clinton explained: ‘I do not intend to put our troops in Kosovo to fight a war’. For the US the post-9/11 Global War on Terror changed this aversiveness to send troops to battle for a while.

What started as a way to ‘market’ humanitarian missions to voters and the general population has turned into a Western narrative on war, which accentuates the ability to strictly control the ‘dosing’ of violence in wars and being able to fight without civilian casualties and collateral damage. During the post-Cold War era, this guiding political principle and a semi-binding Western norm on warfare have led to Western militaries developing extremely expensive military systems to fight this ‘frictionless precision warfare’. This trend has been tremendously problematic for European states, as they in most cases do not have sufficient economic resources to develop their armed forces into credible military actors with even a modest number of usable high-tech military systems. When combining this trend with the post-Cold War era professionalisation of European militaries, most states in Europe today possess ‘Lilliputian militaries’ with little warfighting capability for large-scale conventional war against advanced state adversaries.

Final thoughts

Air power is important in warfare. Moreover, modern high-tech air forces can produce a decisive effect on the battlefield when used properly. ‘Unfortunately’ for some Western (mostly European) militaries, the post-Cold War era did not for more than 20 years pose any real military challenges that would have required sober analysis on what kind of missions the armed forces should be preparing against. Moreover, more importantly, as the existential threat evaporated quickly in the early 1990s, many Western political leaders filled the vacuum of security threats by turning their eyes towards out-of-area conflicts and stability throughout the globalising world.

In a cumulative 20-year long emergent process, Western states have become more and more interested in and reliant on applying air power actively in expeditionary operations because using military force throughout the international system has become possible. Political leader’s ‘trigger happiness’ in the West has increased during the post-Cold War era. On the tactical and operational levels of war, air power offers ‘easy solutions’ when there is the need to do something quickly and visibly – for example during large-scale atrocities committed by authoritarian leaders towards their citizen. On the strategic level, though, the results have been much more modest. Modern air power has not lifted the ‘fog of war’, nor has it produced many positive strategic results. Air power does not provide Western states with a ‘silver bullet’, nor has it changed the nature of war:  war is still a duel of wills, which means that adaptive enemies will do their utmost to destabilise Western strengths and lead in military capability development. This can be done at the tactical, operational or strategic levels.

990328-F-4728F-009
A USAF F-15E Strike Eagle takes off from Aviano Air Base, Italy, for an air strike mission in support of NATO Operation ALLIED FORCE on March 28, 1999. (Source: Wikimedia)

The use of large-scale military violence – waging war – needs to be taken seriously. Even if it is possible to cause pinpoint destruction and make targeted killings, one should remember that political problems can rarely be solved by killing all the opponents (from afar) or by punishing them severely. The active use of Western air power during the last 20 years has resulted in the lowering the threshold on the use of military force in the world. This could backfire in the future as China and Russia are increasing their military capabilities and great-power statuses.

Dr Jyri Raitasalo is a Lieutenant-Colonel in the Finnish military and a Senior Staff Officer at the Planning Unit (strategic planning) of the Finnish Ministry of Defence. He holds the title of Docent of strategy and security policy at the Finnish National Defence University.  During his latest assignments, he has served as the Commanding Officer of the Helsinki Air Defence Regiment (Armoured Brigade), Head Lecturer of Strategy at the Finnish National Defence University, ADC to the Chief of Defence and Staff Officer (strategic planning) in the Finnish Defence Command (J5). Jyri Raitasalo is a called member of the Royal Swedish Academy of War Sciences.

Header Image: The Department of Defense’s first U.S. Air Force F-35 Lightning II joint strike fighter (JSF) aircraft soars over Destin, before landing at its new home at Eglin Air Force Base, July 14, 2011. (Source: Wikimedia)